4 research outputs found

    Brave New GES World:A Systematic Literature Review of Gestures and Referents in Gesture Elicitation Studies

    Get PDF
    How to determine highly effective and intuitive gesture sets for interactive systems tailored to end users’ preferences? A substantial body of knowledge is available on this topic, among which gesture elicitation studies stand out distinctively. In these studies, end users are invited to propose gestures for specific referents, which are the functions to control for an interactive system. The vast majority of gesture elicitation studies conclude with a consensus gesture set identified following a process of consensus or agreement analysis. However, the information about specific gesture sets determined for specific applications is scattered across a wide landscape of disconnected scientific publications, which poses challenges to researchers and practitioners to effectively harness this body of knowledge. To address this challenge, we conducted a systematic literature review and examined a corpus of N=267 studies encompassing a total of 187, 265 gestures elicited from 6, 659 participants for 4, 106 referents. To understand similarities in users’ gesture preferences within this extensive dataset, we analyzed a sample of 2, 304 gestures extracted from the studies identified in our literature review. Our approach consisted of (i) identifying the context of use represented by end users, devices, platforms, and gesture sensing technology, (ii) categorizing the referents, (iii) classifying the gestures elicited for those referents, and (iv) cataloging the gestures based on their representation and implementation modalities. Drawing from the findings of this review, we propose guidelines for conducting future end-user gesture elicitation studies

    Motion-based Interaction for Head-Mounted Displays

    Get PDF
    Recent advances in affordable sensing technologies have enabled motion-based interaction (MbI) for head-mounted displays (HMDs). Unlike traditional input devices like the mouse and keyboard, which often offer comparatively limited interaction possibilities (e.g., single-touch interaction), MbI does not have these constraints and is more natural because they reflect more closely people do things in real life. However, several issues exist in MbI for HMDs due to the technical limitations of the sensing and tracking devices, higher degrees of freedom afforded to users, and limited research in the area due to the rapid advancement of HMDs and tracking technologies. This thesis first outlines four core challenges in the design space of MbI for HMDs: (1) boundary awareness for hand-based interaction, (2) efficient hands-free head-based interface for HMDs, (3) efficient and feasible full-body interaction for general tasks with HMDs, and (4) accessible full-body interaction for applications in HMDs. Then, this thesis presents an investigation into the contributions of these challenges in MbI for HMDs. The first challenge is addressed by providing visual feedback during interaction tailored for such technologies. The second challenge is addressed by using a circular layout with a go-and-hit selection style for head-based interaction using text entry as the scenario. In addition, this thesis explores additional interaction mechanisms that leverage the affordances of these techniques, and in doing so, we propose directional full-body motions as an interaction approach to perform general tasks with HDMs as an example to address the third challenge. The last challenge is addressed by (1) exploring the differences between performing full-body interaction for HMDs and common displays (i.e., TV) and (2) providing a set of design guidelines that are specific to current and future HMDs. The results of this thesis show that: (1) visual methods for boundary awareness can help with mid-air hand-based interaction in HMDs; (2) head-based interaction and interfaces that take advantages of MbI, such as a circular interface, can be very efficient and low error hands-free input method for HMDs; (3) directional full-body interaction can be a feasible and efficient interaction approach for general tasks involving HMDs; (4) full-body interaction for applications in HMDs should be designed differently than for traditional displays. In addition to these results, this thesis provides a set of design recommendations and takeaway messages for MbI for HMDs
    corecore