1,795 research outputs found

    The Default Risk of Firms Examined with Smooth Support Vector Machines

    Get PDF
    In the era of Basel II a powerful tool for bankruptcy prognosis is vital for banks. The tool must be precise but also easily adaptable to the bank's objections regarding the relation of false acceptances (Type I error) and false rejections (Type II error). We explore the suitability of Smooth Support Vector Machines (SSVM), and investigate how important factors such as selection of appropriate accounting ratios (predictors), length of training period and structure of the training sample influence the precision of prediction. Furthermore we showthat oversampling can be employed to gear the tradeoff between error types. Finally, we illustrate graphically how different variants of SSVM can be used jointly to support the decision task of loan officers.Insolvency Prognosis, SVMs, Statistical Learning Theory, Non-parametric Classification

    The Default Risk of Firms Examined with Smooth Support Vector Machines

    Get PDF
    In the era of Basel II a powerful tool for bankruptcy prognosis is vital for banks. The tool must be precise but also easily adaptable to the bank's objections regarding the relation of false acceptances (Type I error) and false rejections (Type II error). We explore the suitabil- ity of Smooth Support Vector Machines (SSVM), and investigate how important factors such as selection of appropriate accounting ratios (predictors), length of training period and structure of the training sample in°uence the precision of prediction. Furthermore we show that oversampling can be employed to gear the tradeoŸ between error types. Finally, we illustrate graphically how diŸerent variants of SSVM can be used jointly to support the decision task of loan o±cers.Insolvency Prognosis, SVMs, Statistical Learning Theory, Non-parametric Classification models, local time-homogeneity

    Predicting Bankruptcy with Support Vector Machines

    Get PDF
    The purpose of this work is to introduce one of the most promising among recently developed statistical techniques – the support vector machine (SVM) – to corporate bankruptcy analysis. An SVM is implemented for analysing such predictors as financial ratios. A method of adapting it to default probability estimation is proposed. A survey of practically applied methods is given. This work shows that support vector machines are capable of extracting useful information from financial data, although extensive data sets are required in order to fully utilize their classification power.support vector machine, classification method, statistical learning theory, electric load prediction, optical character recognition, predicting bankruptcy, risk classification

    Comparison of Support Vector Machine and Back Propagation Neural Network in Evaluating the Enterprise Financial Distress

    Full text link
    Recently, applying the novel data mining techniques for evaluating enterprise financial distress has received much research alternation. Support Vector Machine (SVM) and back propagation neural (BPN) network has been applied successfully in many areas with excellent generalization results, such as rule extraction, classification and evaluation. In this paper, a model based on SVM with Gaussian RBF kernel is proposed here for enterprise financial distress evaluation. BPN network is considered one of the simplest and are most general methods used for supervised training of multilayered neural network. The comparative results show that through the difference between the performance measures is marginal; SVM gives higher precision and lower error rates.Comment: 13 pages, 1 figur

    Improving bankruptcy prediction in micro-entities by using nonlinear effects and non-financial variables

    Get PDF
    The use of non-parametric methodologies, the introduction of non-financial variables, and the development of models geared towards the homogeneous characteristics of corporate sub-populations have recently experienced a surge of interest in the bankruptcy literature. However, no research on default prediction has yet focused on micro-entities (MEs), despite such firms’ importance in the global economy. This paper builds the first bankruptcy model especially designed for MEs by using a wide set of accounts from 1999 to 2008 and applying artificial neural networks (ANNs). Our findings show that ANNs outperform the traditional logistic regression (LR) models. In addition, we also report that, thanks to the introduction of non-financial predictors related to age, the delay in filing accounts, legal action by creditors to recover unpaid debts, and the ownership features of the company, the improvement with respect to the use of solely financial information is 3.6%, which is even higher than the improvement that involves the use of the best ANN (2.6%)

    Application of support vector machines on the basis of the first Hungarian bankruptcy model

    Get PDF
    In our study we rely on a data mining procedure known as support vector machine (SVM) on the database of the first Hungarian bankruptcy model. The models constructed are then contrasted with the results of earlier bankruptcy models with the use of classification accuracy and the area under the ROC curve. In using the SVM technique, in addition to conventional kernel functions, we also examine the possibilities of applying the ANOVA kernel function and take a detailed look at data preparation tasks recommended in using the SVM method (handling of outliers). The results of the models assembled suggest that a significant improvement of classification accuracy can be achieved on the database of the first Hungarian bankruptcy model when using the SVM method as opposed to neural networks

    Estimation of Default Probabilities with Support Vector Machines

    Get PDF
    Predicting default probabilities is important for firms and banks to operate successfully and to estimate their specific risks. There are many reasons to use nonlinear techniques for predicting bankruptcy from financial ratios. Here we propose the so called Support Vector Machine (SVM) to estimate default probabilities of German firms. Our analysis is based on the Creditreform database. The results reveal that the most important eight predictors related to bankruptcy for these German firms belong to the ratios of activity, profitability, liquidity, leverage and the percentage of incremental inventories. Based on the performance measures, the SVM tool can predict a firms default risk and identify the insolvent firm more accurately than the benchmark logit model. The sensitivity investigation and a corresponding visualization tool reveal that the classifying ability of SVM appears to be superior over a wide range of the SVM parameters. Based on the nonparametric Nadaraya-Watson estimator, the expected returns predicted by the SVM for regression have a significant positive linear relationship with the risk scores obtained for classification. This evidence is stronger than empirical results for the CAPM based on a linear regression and confirms that higher risks need to be compensated by higher potential returns.Support Vector Machine, Bankruptcy, Default Probabilities Prediction, Expected Profitability, CAPM.

    Predicting financial distress:A comparison of survival analysis and decision tree techniques

    Get PDF
    AbstractFinancial distress and then the consequent failure of a business is usually an extremely costly and disruptive event. Statistical financial distress prediction models attempt to predict whether a business will experience financial distress in the future. Discriminant analysis and logistic regression have been the most popular approaches, but there is also a large number of alternative cutting – edge data mining techniques that can be used. In this paper, a semi-parametric Cox survival analysis model and non-parametric CART decision trees have been applied to financial distress prediction and compared with each other as well as the most popular approaches. This analysis is done over a variety of cost ratios (Type I Error cost: Type II Error cost) and prediction intervals as these differ depending on the situation. The results show that decision trees and survival analysis models have good prediction accuracy that justifies their use and supports further investigation
    • 

    corecore