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Abstract

In the era of Basel II a powerful tool for bankruptcy prognosis is
vital for banks. The tool must be precise but also easily adaptable to
the bank’s objections regarding the relation of false acceptances (Type
I error) and false rejections (Type II error). We explore the suitabil-
ity of Smooth Support Vector Machines (SSVM), and investigate how
important factors such as selection of appropriate accounting ratios
(predictors), length of training period and structure of the training
sample influence the precision of prediction. Furthermore we show
that oversampling can be employed to gear the tradeoff between error
types. Finally, we illustrate graphically how different variants of SSVM
can be used jointly to support the decision task of loan officers.
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1 Introduction

Default prediction is at the core of credit risk management and has there-

fore always obtained special attention. It has become even more important

since the Basel Committee on Banking Supervision (Basel - II) established

borrowers’ rating as the crucial criterion for minimum capital requirements

of banks. The methods for generating rating figures have developed signif-

icantly over the last 10 years (Krahnen and Weber, 2001). The rational

behind the increased sophistication in predicting the borrowers default risk

is the aim of banks to minimize their cost of capital.

In this paper we intend to contribute to increased sophistication by ex-

ploring the predicting power of Smooth Support Vector Machines (SSVM).

SSVM is a variant of the basic SVM. The working principle of SVMs in

general is described very easily. Imagine a bunch of observations in distinct

classes such as balance sheet data from solvent and insolvent companies.

Assume that the observations are such that they can not be separated by

a linear function. Rather than fitting nonlinear curves to the data, SVMs

handle this problem by using a specific transformation function, the kernel

function, that maps the data from the original space into a higher dimen-

sional space where a hyperplane can do the separation linearly. The con-

strained optimization calculus of SVM gives a unique optimal separating

hyperplane and adjusts it in such a way that the elements of distinct classes

possess the largest distance to the hyperplane. By re-transforming the sepa-

rating hyperplane into the original space of variables, the typical non-linear

separating function emerges (Vapnik, 1995). The main difference of SSVMs

and SVMs is the following. With SSVMs the transition from the class of

solvent to the class of insolvent companies occurs in a smooth way while the

basic SVMs employ for separation a strictly defined cut off value.
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Our aim is threefold when using SSVM. First, we examine the power of

SSVM in predicting firms’ defaults, second, we investigate how important

factors, that are exogenous to the model such as selecting the appropri-

ate set of accounting ratios, length of training period and structure of the

training sample, influence the precision, and third, we explore how over-

sampling and downsampling affects the tradeoff between Type I and Type

II errors. In addition, we illustrate graphically how loan officers can bene-

fit from considering jointly the prediction results of different SSVM-variants.

There are basically three distinct approaches to predict the risk of de-

fault: option theory-based approaches, parametric models and non-para-

metric methods. While the first class relies on the rule of no arbitrage the

latter both are based purely on statistic principles. The popular Merton

(1974) model treats the firm’s equity as the underlying asset of a call op-

tion held by shareholders. In case of insolvency shareholders deny exercising.

The probability of default is derived from an adapted Black-Scholes formula.

Later, several authors – e.g. Longstaff and Schwartz (1995), Mella-Barral

and Perraudin (1997), Leland and Toft (1996) and Zhou (2001), to name only

a few – propose variations to ease the strict assumptions on the structure of

the data, imposed by the Merton model. These approaches are frequently

denoted as structural models. However, the most challenging requirement is

the knowledge of market values of debt and equity. This precondition is a

severe obstacle for adequately using the Merton model as it is satisfied only

in a small minority of cases.

Parametric statistical models can be applied to any type of data, whether

they are market or book based. The first model introduced was discrimi-

nant analysis (DA) for univariate (Beaver, 1966) and multivariate models
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(Altman, 1968). After DA usage of the logit and probit approach for pre-

dicting default were proposed in Martin (1977) and Ohlson (1980). These

approaches rely on an a priori assumed functional dependence between risk

of default and predictor. DA requires a linear functional dependence, or a

preshaped polynomial functional dependence in advanced versions. Logit

and probit tools work with monotonic relationships between default event

and predictors such as accounting ratios. However, such restrictions often

fail to meet the reality of observed data. This fact makes it clear, that there

is a need for an approach that, in contrast to conventional methods, relaxes

the requirements on data and/or lower the dependence on heuristics. Non-

linear classification methods such as Support Vector Machines (SVMs) or

neural networks are strong candidates to meet these demands as they go

beyond conventional discrimination methods. Tam and Kiang (1992) and

Altman, Marco and Varetto (1994) focus on neural networks. In contrast,

we concentrate on SVMs exclusively.

SVM is a relatively new technique and builds on the principles of sta-

tistical learning theory. It is easier to handle compared to neural networks.

Furthermore, SVMs have a wider scope of application as the class of SVM

models includes neural networks (Schölkopf and Smola, 2002). The power

of the SVM-technology becomes evident in a situation as depicted in Figure

1 where operating profit margin and equity ratio are used as explanatory

variables. A separating function similar to a parabola (in dark blue) appears

in the n = 2-dimensional space. The accompanying pink lines represent the

margin boundaries whose shape and location determine the distance of el-

ements from the separating function. In contrast, the Logit approach and

discriminant analysis (DA) yield the (white) linear separating function.

Selecting the best accounting ratios for executing the task of predicting
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Figure 1: SVM-separating function (dark blue) with margin in a two-
dimensional space.

is an important issue in practice but has not received appropriate atten-

tion in research. We address this issue of how important the chosen set of

predictors is for the outcome. For this purpose we explore the prediction

potential of SSVM within a two step approach. First, we derive alternative

sets of accounting ratios that are used as predictors. The benchmark set

comes from Chen, Härdle and Moro (2006). A second set is defined by a

1-norm SVM, and the third sets is based on the principle of adding only

those variables that contain the most contrary information with respect to

an a priori chosen initial set. We call the latter procedure the incremental

forward selection of variables. As a result we are working with three variants

of SSVM. In the second step then, these variants are compared with respect

to their prediction power.
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The analysis is built on 30 accounting ratios of 20,000 solvent and 1,000

insolvent German firms. Our finding show that the SSVM-types have an

overall good performance with hit ratios ranging from 59.8 % to 74.1 %

(mean). The SSVM based on predictors selected by the 1-norm SVM clearly

outperforms the SSVM on the basis of incremental forward selection. It is

also found that oversampling influences the trade off between Type I and

Type II errors. Thus, oversampling can be used to make the relation of the

two error types an issue of bank policy.

The rest of the paper is organized as follows. The following sections

describe the data and the SVM methodology. In Section 3 and 4 the variable

selection technique, the estimation procedure and the findings are explained.

Section 5 illustrates some results. Section 6 concludes.

2 Data and measures of accuracy

In this study of the potential virtues of SVMs in insolvency prognosis the

CreditReform database is employed. The database consists of 20,000 finan-

cially and ecomically solvent and 1,000 insolvent German firms observed once

in the period of 1997 to 2002. Although the firms were randomly selected,

accounting information dates most frequently in 2001 and 2002. Approxi-

mately 50% of the observations are coming from this period. The industry

distribution of the insolvent firms is as follows: construction 39.7%, manu-

facturing 25.7%, wholesale & retail trade 20.1%, real estate 9.4% and others

5.1%. The latter includes businesses in agriculture, mining, electricity, gas

and water supply, transport and communication, financial intermediation

social service activities and hotels and restaurants. The 20000 solvent com-

panies belong to manufacturing (27.4%), wholesale & retail trade (24.8%),

real estate (16.9%), construction (13.9%) and the others (17.1%). There is

only low coincidence between the insolvent group of “others” and the solvent

6



0
20

40
60

80
10

0
P

er
ce

nt

construction
manufacturing

wholesale & retail trade
real estate

others

solvent insolvent

Figure 2: Portions of solvent and insolvent firms per industry

one. The latter comprises many firms of additional industries such as pub-

lication administration and defense, education and health. Figure 2 shows

the portions of solvent and insolvent firm per industry. A set of balance

sheet and income statement items describes each company. The ones we use

for further analysis are described below:

• AD (Amortization and Depreciation)

• AP (Accounts Payable)

• AR (Account Receivable)

• CA (Current Assets)

• CASH (Cash and Cash Equivalents)

• CL (Current Liabilities)

• DEBT (Debt)
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• EBIT (Earnings before Interest and Tax)

• EQUITY (Equity)

• IDINV (Growth of Inventories)

• IDL (Growth of Liabilities)

• INTE (Interest Expense)

• INV (Inventories)

• ITGA (Intangible Assets)

• LB (Lands and Buildings)

• NI (Net Income)

• OI (Operating Income)

• QA (Quick Assets)

• SALE (Sales)

• TA (Total Assets)

• TL (Total Liabilities)

• WC (Working Capital (=CA-CL))

Firms appear in the database several times in different years. However, each

financial information from a particular year is treated as a single observation.

The data of the insolvent firms are collected two years prior to insolvency.

The firm size is measured by total assets. We construct 28 ratios to condense

the balance sheet information (see Table 1). However, before dealing with

the Creditreform dataset, some firms whose behavior is very different from

other ones are filtered out in order to make the dataset more compact. The

data preprocessing procedure is described as follows:
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Table 1: The Definitions of Accounting Ratios used in the analysis

Variable Ratio Indicator for
X1 NI/TA Profitability
X2 NI/SALE Profitability
X3 OI/TAS Profitability
X4 OI/SALE Profitability
X5 EBIT/TA Profitability
X6 (EBIT+AD)/TA Profitability
X7 EBIT/SALE Profitability
X8 EQUITY/TA Leverage
X9 (EQUITY-ITGA)/ Leverage

(TA-ITGA-CASH-LB) Leverage
X10 CL/TA Leverage
X11 (CL-CASH)/TA Leverage
X12 TL/TA Leverage
X13 DEBT/TA Leverage
X14 EBIT/INTE Leverage
X15 CASH/TA Liquidity
X16 CASH/CL Liquidity
X17 QA/CL Liquidity
X18 CA/CL Liquidity
X19 WC/TA Liquidity
X20 CL/TL Liquidity
X21 TA/SALE Activity
X22 INV/SALE Activity
X23 AR/SALE Activity
X24 AP/SALE Activity
X25 Log(TA) Size
X26 IDINV/INV Growth
X27 IDL/TL Growth
X28 IDCASH/CASH Growth
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1. We exclude those firms whose total asset sizes are not in the range

of 105 to 107 EUR and the year of 1996 (remaining insolvent: 967;

solvent: 15,834).

2. In order to compute the accounting ratios AP/SALE, OI/TA, TL/TA,

CASH/TA, IDINV/INV, INV/SALE, EBIT/TA and NI/SALE, we

remove the firms with zero denominators (remaining insolvent: 816;

solvent 11,005).

3. We drop outliers, that is, in the insolvent class the firms with the ex-

treme values of financial indices will be removed (remaining insolvent:

811; solvent: 10468).

After this preprocessing, there are 11,279 firms in the dataset, including 811

insolvent and 10,468 solvent firms. In the following analysis, we focus on

the revised dataset.

The performance of the SSVMs is evaluated on the basis of three mea-

sures of accuracy: Type I error rate (in %), Type II error rate (in %) and

total error rate (in %). The hit ratio is 100-total error rate (in %). Type

I error is the ratio of the number of predicting falsely insolvent companies

to the number of insolvent companies. Similarly, the Type II error is the

ratio of the number of predicting falsely solvent companies to the number

of solvent companies. The error-types are defined as follows

• Type I error rate = FN/(FN+TP)×100%,

• Type II error rate= FP/(FP+TN)×100%,

• Total error rate =(FN+FP)/(TP+TN+FP+FN)×100%,

where
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True Positive (TP ): Predict insolvent firms as insolvent ones
False Positive (FP ): Predict solvent firms as insolvent ones
True Negative (TN): Predict solvent firms as solvent ones
False Negative (FN): Predict insolvent firms as solvent ones.

Table 2 explains the terms used in the definition of error rates.

Table 2: Matrix for possibilities of prediction

Predicted class
Positive Negative

Actual Positive True Positive (TP ) False Negative (FN)
Class Negative False Positive (FP ) True Negative (TN)

3 SVM-Methodology

In recent years, the so-called support vector machine (SVM) which has its

roots in the theory of statistical learning (Burges, 1998; Cristianini and

Shawe-Taylor, 2000; Vapnik, 1995) has become one of the most success-

ful learning algorithms for classification as well as for regression (Drucker,

Burges, Kaufman, Smola and Vapnik, 1997; Mangasarian and Musicant,

2000; Smola and Schölkopf, 2004; Lee, Hsieh and Huang, 2005). Some fea-

tures of SVM make it particularly attractive for predicting the default risk

of firms. SVMs are a non-parametric technique that learn the separating

function from the data, they are based on a sound theoretical concept, do

not require a particular distribution of the data, and deliver an optimal

solution for the expected loss from misclassification. SVMs estimate the

separating hyperplane between defaulting and non-defaulting firms under

the constraint of a maximal margin between the two classes, see Vapnik

(1995) and Schölkopf and Smola (2002).
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SVMs can be formulated differently. However, in all variants either a

constrained minimization problem or an unconstrained minimization prob-

lem is solved. The objective function in these optimization problems basi-

cally consists of two parts: a misclassification penalty part which stands for

model bias and a regularization part which controls the model variance. We

briefly introduce three different models: the smooth support vector machine

(SSVM) (Lee and Mangasarian, 2001), the smooth support vector machine

with reduced kernel technique (RSVM) and the 1-norm SVM. The SSVM

will be used for classification and the 1-norm SVM will be employed to vari-

able selection. The RSVM is applied for oversampling in order to mitigate

the computational burden due to increasing the number of instances in the

training sample.

3.1 Smooth support vector machine

The aim of SVM is to find the separating hyperplane with the largest mar-

gin from the training data. This hyperplane is “optimal” in the sense of

statistical learning: it strikes a balance between overfitting and underfit-

ting. Overfitting means that the classification boundary is too curved and

therefore has less ability to classify unseen data correctly. Underfitting on

the other hand, gives a too simple classification boundary and leaves too

many misclassified observations (Vapnik, 1995). Given a training dataset

S = {(x1, y1), . . . , (xn, yn)} ⊆ Rd × R, where xi ∈ Rd is the input data

and yi ∈ {−1, 1} is the corresponding class label, striking the balance via

an optimal hyperplane can be achieved by a two step procedure. First, a

convex optimization problem is solved and, second, the kernel trick is ap-

plied. Below we describe how both steps lead to the SSVM we are aiming at.

For reasons of reference we start the description by the convex optimization

12



problem of a conventional SVM:

min
(w,b,ξ)∈Rd+1+n

C
∑n

i=1 ξi + 1
2‖w‖2

2

s.t. yi(w>xi + b) + ξi ≥ 1
ξi ≥ 0, for i = 1, 2, . . . , n,

(1)

has to be solved where C is a positive parameter controlling the tradeoff

between the training error (model bias) and the part of maximizing the

margin (model variance) that is achieved by minimizing ‖w‖2
2. In contrast

to the basic SVM of (1), a smooth support vector machine (SSVM) mini-

mizes the square of the slack vector ξ with weight C
2 . In addition, SSVM

appends the term b2

2 to the objective to be minimized results in the following

minimization problem:

min
(w,b,ξ)∈Rd+1+n

C
2

∑n
i=1 ξ2

i + 1
2(‖w‖2

2 + b2)

s.t. yi(w>xi + b) + ξi ≥ 1
ξi ≥ 0, for i = 1, 2, . . . , n.

(2)

At a solution of (2), ξ is given by ξi = {1 − yi(w>xi + b)}+ for all i where

the plus function x+ is defined as x+ = max{0, x}. Thus, we can replace ξi

in (2) by {1 − yi(w>xi + b)}+. This will convert the problem (2) into an

unconstrained minimization problem as follows:

min
(w,b)∈Rd+1

C

2

n∑

i=1

{1− yi(w>xi + b)}2
+ +

1
2
(‖w‖2

2 + b2). (3)

This formulation reduces the number of variables from d+1+n to d+1. How-

ever, the objective function to be minimized is not twice differentiable which

precludes the use of a fast Newton method. In SSVM, the plus function x+ is

approximated by a smooth p−function, p(x, α) = x+ 1
α log(1+e−αx), α > 0.

By replacing the plus function with a very accurate smooth approximation

p-function gives the smooth support vector machine formulation:

min
(w,b)∈Rd+1

C

2

n∑

i=1

p({1− yi(w>xi + b)}, α)2 +
1
2
(‖w‖2

2 + b2), (4)
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where α > 0 is the smooth parameter. The objective function in problem

(4) is strongly convex and infinitely differentiable. Hence, it has a unique

solution and can be solved by using a fast Newton-Armijo algorithm. In

the second step, this formulation can be extended to the nonlinear SVM by

using the kernel trick as follows:

min
(u,b)∈Rn+1

C

2

n∑

i=1

p([1− yi{
n∑

j=1

ujK(xi,xj) + b}], α)2 +
1
2
(‖u‖2

2 + b2), (5)

where K(xi,xj) is a kernel function. This kernel function represents the

inner product of φ(xi) and φ(xj) where φ is a certain mapping from input

space Rd to a feature space F . We do not need to know the mapping φ

explicitly. This is the so-called kernel trick. The nonlinear SSVM classifier

can be expressed in matrix form as follows:

∑

uj 6=0

ujK(A>j ,x) + b = K(x, A>)u + b (6)

where A = [x>1 ; · · · ;x>n ] and Aj = x>j

3.2 Reduced Support Vector Machine

In large scale problems, the full kernel matrix will be very large so it may not

be appropriate to use the full kernel matrix when dealing with (5). In order

to avoid facing such a big full kernel matrix, we brought in the reduced kernel

technique (Lee and Huang, 2007). The key idea of reduced kernel technique

is randomly selecting a portion of data as to generate a thin rectangular

kernel matrix. Then it uses this much smaller rectangular kernel matrix to

replace the full kernel matrix. In the process of replacing the full kernel

matrix by a reduced kernel, we use the Nyström approximation (Smola and

Schölkopf, 2000) for the full kernel matrix:

K(A,A>) ≈ K(A, Ã>)K(Ã, Ã>)−1K(Ã, A>), (7)
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where K(A,A>) = Kn×n , Ãñ×d is a subset of A and K(A, Ã) = K̃n×ñ is a

reduced kernel. Thus, we have

K(A,A>)u ≈ K(A, Ã>)K(Ã, Ã>)−1K(Ã>, A)u = K(A, Ã>)ũ. (8)

where ũ ∈ Rñ is is an approximated solution of u via the reduced kernel

technique. The reduced kernel method constructs a compressed model and

cuts down the computational cost from O(n3) to O(ñ3). It has been shown

that the solution of reduced kernel matrix approximates the solution of full

kernel matrix well. The SVM with the reduced kernel is called RSVM.

3.3 1-norm Support Vector Machine

The 1-norm support vector machine replaces the regularization term ‖w‖2
2

in (1) with the `1-norm of w. The `1-norm regularization term is also called

the LASSO penalty (Tibshirani, 1996). It tends to shrink the coefficients

w’s towards zeros in particular for those coefficients corresponding to redun-

dant noise features (Zhu, Rosset, Hastie and Tibshirani, 2003; Williams and

Seeger, 2001). This nice feature will lead to a way to select the important

ratios in our prediction model. The formulation of 1-norm SVM is described

as follows:
min

(w,b,ξ)∈Rd+1+n
C

∑n
i=1 ξi + ‖w‖1

s.t. yi(w>xi + b) + ξi ≥ 1
ξi ≥ 0, for i = 1, 2, . . . , n.

(9)

The objective function of (9) is a piecewise linear convex function. We can

reformulate it as the following linear programming problem:

min
(w,s,b,ξ)∈Rd+d+1+n

C
∑n

i=1 ξi +
∑n

j=1 sj

s.t. yi(w>xi + b) + ξi ≥ 1
−sj ≤ wj ≤ sj , for j = 1, 2, . . . , d,
ξi ≥ 0, for i = 1, 2, . . . , n,

(10)

where sj is the upper bound of the absolute value of wj . At the optimal

solution of (10) the sum of sj is equal to ‖w‖1.
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The 1-norm SVM can generate a very sparse solution w and lead to

a parsimonious model. In a linear SVM classifier, solution sparsity means

that the separating function f(x) = w>x + b depends on very few input

attributes. This characteristic can significantly suppress the number of the

nonzero coefficients w’s, especially when there are many redundant noise

features (Fung and Mangasarian, 2004; Zhu et al., 2003). Therefore the

1-norm SVM can be a very promising tool for the variable selection tasks.

We will use it to choose the important financial indices for our bankruptcy

prognosis model.

4 Selection of Accounting ratios

In principle any possible combination of accounting ratios could be used as

explanatory variables in a bankruptcy prognosis model. Therefore, appro-

priate performance measures are needed to gear the process of selecting the

ratios with the highest separating power. In Chen et al. (2006) Accuracy

Ratio (AR) and Conditional Information Entropy Ratio (CIER) determine

the selection procedure’s outcome. It turned out that the ratio “accounts

payable divided by sales”, X24 (AP/SALE), has the best performance values

for a univariate SVM model. The second selected variable was the one com-

bined with X24 that had the best performance of a bivariate SVM model.

This is the analogue of forward selection in linear regression modeling. If

one keeps on adding new variables one typically observes a declining change

in improvement. This was also the case in that work where the performance

indicators started to decrease after the model included eight variables. The

described selection procedure is quiet lengthy, since there are at least 216

accounting ratio combinations to be considered. We will not employ the

procedure here but use the chosen set of 8 variables as the benchmark set

V1. Table 3 presents V1 in the first column.
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We propose two different approaches for variable selection that will sim-

plify the selection procedure. The first one is based on 1-norm SVM in-

troduced in the section 3.2. The SVM was applied to the period from 1997

through 1999. We selected the variables according to the size of the absolute

values of the coefficients w from the solution of the 1-norm SVM. Table 3

displays the eight selected variables as V2. We obtain 8 variables out of 28.

Note that five variables, X2, X3, X5, X15 and X24 are also in the benchmark

set V1.

The second variable selection scheme is incremental forward variable se-

lection. The intuition behind this scheme is that a new variable will be

added into the already selected set if it will bring in the most extra informa-

tion. We measure the extra information for an accounting ratio using the

distance between this new ratio vector and the space spanned by the cur-

rent selected ratio subset. This distance can be computed by solving a least

squares problem. The ratio with the farthest distance will be added into

the selected accounting ratio set. We repeat this procedure until a certain

stopping criteria is satisfied. V1 is used as the initial selected accounting

ratio set. Then we follow the procedure to select 7 extra more accounting

ratios. These 7 ratios are different from V1, and are called the variable set

V3. We will use these three variable sets for the further data analysis in the

coming section.

5 Experiments Setting and Simulation Results

In this section we present our experimental setting and results. We compare

the performance of three sets of accounting ratios, V1, V2 and V3, in our

SSVM-based insolvency prognosis model. The performance is measured by

Type I error rate, Type II error rate and total error rate. Fortunately, in

reality, there is only a small portion of companies insolvent compared to

17



Table 3: Selected variables

Variable Definition V1 V2 V3
X2 NI/SALE x x
X3 OI/TAS x x
X5 EBIT/TA x x
X6 (EBIT+AD)/TA x x
X8 EQUITY/TA x x
X10 CL/TA x
X11 (CL-CASH)/TA x
X12 TL/TA x
X13 DEBT/TA x
X15 CASH/TA x x
X19 WC/TA x
X20 CL/TL x
X22 INV/SALE x
X23 AR/SALE x
X24 AP/SALE x x
X26 IDINV/INV x

the number of solvent companies. Due to the small share in a sample that

reflects reality, a simple classification such as Näıve Bayes or a decision tree

tends to classify every company as solvent. That is accepting all companies’

loan applications. This will lead to a very high Type I error rate while the

total error rate and the Type II error rate are very small. Such kind of

models is useless in practice.

Our cleaned data set consists of around 10% of insolvent companies.

Thus, the sample is fairly unbalanced although the share of insolvent com-

panies is higher than in reality. In order to deal with this problem, in-

solvency prognosis models start usually off with more balanced training

and testing samples than reality provides. For example Härdle, Moro and

Schäfer (2007) employ a down-sampling strategy and work with balanced

18



(50%/50%)-samples. The chosen bootstrap procedure repeatedly randomly

selects a fixed number of insolvent firms from the training set and adds the

same number of randomly selected solvent firms. However, in this paper, we

adopt a an over-sampling strategy, to balance the size between the solvent

and the insolvent firms, and refer to the down-sampling procedure primarily

for reasons of reference.

Over-sampling duplicates the number of the insolvent firms a certain

times. In this experiment, we duplicate in each scenario the number of in-

solvent firms as many times as necessary for reaching a balanced sample.

Note that in our over-sampling scheme every solvent and insolvent com-

pany’s information is utilized. This increases the computational burden due

to increasing the number of training instances. We employ the reduced ker-

nel technique introduced in section 3.2 to mediate this problem.

All classifiers we need in these experiments are nonlinear SSVM with the

Gaussian kernel which is defined as:

K(x, z) = e−γ||x−z||22 ,

where γ is the width parameter. In nonlinear SSVM, we need to determine

two parameters, the penalty term C and γ. The 2-D grid search will consume

a lot of time. In order to cut down the search time, we adopt the uniform

design model selection method (Huang, Lee, Lin and Huang, 2007) to search

an appropriate pair of parameters.

5.1 Performance of SSVM

We conduct the experiments in a scenario in which we always train the ma-

chine from the data in hand and then use the trained SVM to predict the

next year’s cases. This strategy simulates the real task of prediction which
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Table 4: The scenario of our experiments

Scenario Observation period of Observation period of
Scenario Training Set Testing Set

S1 1997 1998
S2 1997-1998 1999
S3 1997-1999 2000
S4 1997-2000 2001
S5 1997-2001 2002

binds the analyst to use past data for forecasting future outcomes. The

experimental setting is described in Table 4. We perform these experiments

for the three variable sets, V1 to V3, repeat them 30 times and compare in

each experiment the over-sampling and the down-sampling scheme.

In Table 5 and Table 6 we report the results for the oversampling and

downsampling strategy respectively. We give mean and standard deviation

of Type I error rates and Type II error rates, and the mean and standard

deviations of total error rates (misclassification rates). The randomness is

very obvious in the down-sampling scheme (see Table 6). Each time we only

choose negative instances with the same size of the whole positive instances.

The observed randomness in our over-sampling scheme (Table 5) is due to

applying the reduced kernel technique for solving the problem. We use the

training set in the down-sampling scheme as the reduced set. That is, we

use the whole insolvent instances and the equal size of solvents instances as

our reduced set in generating the reduced kernel. Then we duplicate the

insolvent part of kernel matrix to balance the size of insolvent and solvent

firms.

Both Tables reveal that different variable schemes produce dissimilar re-

sults with respect to both precision and deviation of predicting. Variable
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Figure 3: Learning curve for variables set V2

set V3 is clearly outperformed by both sets V1 and V2. The inferiority of

V3 arises in both, the down-sampling and the over-sampling scenario. The

over-sampling scheme shows better results in the Type I error rate (red line

above, see Figure 3) but has slightly bigger total error rates (dashed red line

below). It is also obvious that in almost all models a longer training period

works in favor of the accuracy of prediction. The learning curve over the

time frame the training sample covers shows an upward tendency for the

number (100 - Type 1 error rate) although there is a disturbance for the

forecast of the year 2000 that is based on training samples that cover 1998

till 1999. The total error rate goes down for both sampling strategies if the
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Table 5: The results in percentage (%) of over-sampling for three variable
sets

Set of Scenario Type I Error Type II Error Total Error
accounting Rate Rate Rate

ratios mean std mean std mean std
S1 32.72 0.70 26.59 0.19 27.12 0.18
S2 31.58 0.30 29.37 0.07 29.59 0.07

V1 S3 27.36 0.55 27.61 0.20 27.59 0.18
S4 30.56 0.57 25.47 0.14 25.79 0.12
S5 25.68 0.23 22.66 0.12 22.80 0.11
S1 30.55 0.50 26.94 0.07 27.25 0.08
S2 30.46 0.35 30.72 0.15 30.69 0.15

V2 S3 28.06 0.01 30.40 0.12 30.23 0.11
S4 28.92 0.49 27.88 0.13 27.94 0.11
S5 25.28 0.09 24.66 0.15 24.68 0.16
S1 25.68 0.81 39.40 0.21 38.22 0.16
S2 17.19 0.23 42.09 0.17 39.56 0.17

V3 S3 28.30 0.34 41.14 0.11 40.20 0.10
S4 20.23 0.52 39.46 0.16 38.26 0.15
S5 28.13 0.26 35.54 0.11 35.21 0.10

training period covers at least three years. One more thing worth pointing

out here is that over-sampling schemes have much smaller standard devia-

tions both in Type I error rate and total error rate.

In order to investigate the effect of the over-sampling versus the down-

sampling scheme we follow the setting as above but use the V2 variable set.

For each training-testing pair, we do over-sampling for positive instances

from 6 to 15 times. We show the trend and effect in Figure 4. It is easy

to find out that the Type I (II) error rate decreases (increases) as the over-

sampling times increases. This feature implies that the machine would have

a tendency of classifying all companies as solvent if the training sample had

realistic shares of insolvent and solvent companies. Such behavior would
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Table 6: The results in percentage (%) of down-sampling for three variable
sets

Set of Scenario Type I Error Type II Error Total Error
accounting Rate Rate Rate

ratios mean std mean std mean std
S1 33.25 3.67 27.85 2.09 28.32 1.73
S2 31.75 2.00 28.79 1.14 29.09 1.00

V1 S3 30.86 1.52 26.79 1.20 27.09 1.09
S4 31.15 1.79 24.76 1.13 25.15 1.00
S5 27.85 2.27 22.44 0.98 22.68 0.89
S1 33.68 3.44 25.78 2.53 26.46 2.05
S2 29.45 2.18 29.95 1.69 29.90 1.39

V2 S3 32.66 2.50 28.10 1.45 28.43 1.19
S4 29.86 1.85 26.25 0.98 26.47 0.91
S5 26.46 2.33 24.48 1.23 24.56 1.15
S1 30.20 5.21 37.28 2.80 36.67 2.29
S2 19.98 2.86 41.16 1.68 39.01 1.40

V3 S3 30.14 1.79 38.64 1.10 38.02 0.94
S4 23.90 2.18 36.95 1.59 36.14 1.42
S5 29.37 1.28 34.48 1.13 34.26 1.04

produce a Type 1 error rate of 100 %. The more balanced the sample is

the higher is the penalty for classifying insolvent companies as solvent. This

fact is illustrated in Figure 4 by the decreasing curve with respect to the

number of duplications of insolvent companies.

Often banks favor a strategy that allows them to minimize the Type II

errors for a given number of Type I errors. The impact of over-sampling on

the trade off between the two types of errors - shown in Figure 4 - implies

that the number of over-sampling times is a strategic variable in training

the machine. This number can be determined by the bank’s aim regarding

the relation of Type I and Type II errors.
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Figure 4: The effect of over-sampling on Type I and Type II error rates for
scenario S5 and variables set V2

5.2 More Data visualization

Each SSVM-model has its own output value. We use these output to con-

struct 2-D coordinate systems. Figure 5 shows an example for scenario S5

where the scores of the V2 model (V1 model) is represented by the vertical

(horizontal) line. A positive (negative) value indicates predicted solvency

(insolvency). We then map all solvent firms in the testing set onto the co-

ordinate systems. There are 132 insolvent firms and 2866 solvent firms in

this testing set. We also randomly choose the same amount of insolvent

firms from the testing set as well. The plus points in the lower left quad-
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rant and the circle points in the upper right quadrant show the number of

Type I errors and Type II errors respectively in both models. Plus points in

the upper right quadrant and circle points in the lower left quadrant reflect

those firms that are predicted correctly by both models. Circles and plus

points in the lower right quadrant (upper left quadrant) represent conflicting

prognoses. We also report the number of insolvent firms and the number of

solvent firms in each quadrant of Figure 5. In Figure 5, you can image the

two different insolvency prognosis models generated by V1 and V2 respec-

tively as different experts. Use their output values for each instance to plot.

It provides a visualization tool and help bank officer to make the decision.

That is, the proposed visualization scheme could be used to support loan

officers in their final decision about accepting or rejecting the application

of the client. If the application has been classified as solvent, or insolvent,

by alternative machines, most likely the prognosis meets reality (the plus

points in the upper right quadrant and the circle points in the lower left

quadrant). Opposing forecasts, however, should be taken as a hint to eval-

uate this firm more thoroughly, for example by employing an expert team,

or even by using a third machine.

6 Conclusion

In this paper we apply different variants of SVM to a unique dataset of Ger-

man solvent and insolvent firms. We use an a-priori given set of predictors

as benchmark, and suggest two further variable selection procedures, the

first procedure uses a 1-norm SVM and the second, incremental way selects

consecutively the variable that is the farthest one from the column space of

current variable set. Given the three SSVM based on distinct variable sets,

the relative performance of the types of smooth support vector machines

is tested. The performance is measured by error rates. The two sets of

variables selected by our own lead to a dissimilar performance SSVM with
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Figure 5: Data visualization via model one (generated by V1) and model
two (generated by V2) in scenario S5

respect of prediction accuracy. The selection of variables by the 1-norm SVM

clearly outperforms the incremental selection scheme. This finding hints at

some superiority of SVMs for the variable selection procedures but further

research is clearly necessary in this respect. The training period makes a

clear difference, though. Results improve considerably if more years of ob-

servation were used in training the machine. Moreover the over-sampling

scheme works very well in dealing with unbalanced datasets. It provides

flexibility to control the trade-off between the Type I and Type II errors.
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The results generated are very stable in term of small deviations of Type I

error and total error rates.
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