1,122 research outputs found

    Peak to average power ratio reduction in NC–OFDM systems

    Get PDF
    Non contiguous orthogonal frequency division multiplexing (NC-OFDM) is an efficient and adaptable multicarrier modulation scheme to be used in cognitive radio communications. However like OFDM, NC-OFDM also suffers from the main drawback of high peak to average power ratio (PAPR). In this paper PAPR has been reduced by employing three different trigonometric transforms. Discrete cosine transform (DCT), discrete sine transform (DST) and fractional fourier transform (FRFT) has been combined with conventional selected level mapping (SLM) technique to reduce the PAPR of both OFDM and NC-OFDM based systems. The method combines all the transforms with SLM in different ways. Transforms DCT, DST and FRFT have been applied before the SLM block or inside the SLM block before IFFT. Simulation results show the comparative analysis of all the transforms using SLM in case of both OFDM and NC-OFDM based systems

    An intelligent genetic algorithm for PAPR reduction in a multi-carrier CDMA wireless system

    Get PDF
    Abstract— A novel intelligent genetic algorithm (GA), called Minimum Distance guided GA (MDGA) is proposed for peak-average-power ratio (PAPR) reduction based on partial transmit sequence (PTS) scheme in a synchronous Multi-Carrier Code Division Multiple Access (MC-CDMA) system. In contrast to traditional GA, our MDGA starts with a balanced ratio of exploration and exploitation which is maintained throughout the process. It introduces a novel replacement strategy which increases significantly the convergence rate and reduce dramatically computational complexity as compared to the conventional GA. The simulation results demonstrate that, if compared to the PAPR reduction schemes using exhaustive search and traditional GA, our scheme achieves 99.52% and 50+% reduction in computational complexity respectively

    A Low-Complexity SLM PAPR Reduction Scheme for OFDMA

    Get PDF
    In orthogonal frequency division multiplexing (OFDM) systems, selected mapping (SLM) techniques are widely used to minimize the peak to average power ratio (PAPR). The candidate signals are generated in the time domain by linearly mixing the original time-domain transmitted signal with numerous cyclic shift equivalents to reduce the amount of Inverse Fast Fourier Transform (IFFT) operations in typical SLM systems. The weighting factors and number of cyclic shifts, on the other hand, should be carefully chosen to guarantee that the elements of the appropriate frequency domain phase rotation vectors are of equal magnitude. A low-complexity expression is chosen from among these options to create the proposed low-complexity scheme, which only requires one IFFT. In comparison to the existing SLM technique, the new SLM scheme achieves equivalent PAPR reduction performance with significantly less computing complexity. MATLAB tool is used for simulating the proposed work

    A Low-Complexity SLM PAPR Reduction Scheme for OFDMA

    Get PDF
    In orthogonal frequency division multiplexing (OFDM) systems, selected mapping (SLM) techniques are widely used to minimize the peak to average power ratio (PAPR). The candidate signals are generated in the time domain by linearly mixing the original time-domain transmitted signal with numerous cyclic shift equivalents to reduce the amount of Inverse Fast Fourier Transform (IFFT) operations in typical SLM systems. The weighting factors and number of cyclic shifts, on the other hand, should be carefully chosen to guarantee that the elements of the appropriate frequency domain phase rotation vectors are of equal magnitude. A low-complexity expression is chosen from among these options to create the proposed low-complexity scheme, which only requires one IFFT. In comparison to the existing SLM technique, the new SLM scheme achieves equivalent PAPR reduction performance with significantly less computing complexity. MATLAB tool is used for simulating the proposed work
    corecore