7 research outputs found

    Segmentation of nerve bundles and ganglia in spine MRI using particle filters

    Get PDF
    14th International Conference, Toronto, Canada, September 18-22, 2011, Proceedings, Part IIIAutomatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation.National Institutes of Health (U.S.) (NAMIC award U54-EB005149)National Science Foundation (U.S.) (CAREER grant 0642971

    Segmentation of nerve bundles and ganglia in spine MRI using particle filters

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 41-44).Automatic segmentation of spinal nerve bundles originating within the dural sac and exiting the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this thesis, we present an automatic tracking method for segmentation of nerve bundles based on particle filters. We develop a novel approach to flexible particle representation of tubular structures based on Bezier splines. We construct an appropriate dynamics to reflect the continuity and smoothness properties of real nerve bundles. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We evaluate the results by comparing them to expert manual segmentation, and we demonstrate accurate and fast nerve tracking.by Adrian Vasile Dalca.S.M

    Segmentation of Pulmonary Vascular Trees from Thoracic 3D CT Images

    Get PDF
    This paper describes an algorithm for extracting pulmonary vascular trees (arteries plus veins) from three-dimensional (3D) thoracic computed tomographic (CT) images. The algorithm integrates tube enhancement filter and traversal approaches which are based on eigenvalues and eigenvectors of a Hessian matrix to extract thin peripheral segments as well as thick vessels close to the lung hilum. The resultant algorithm was applied to a simulation data set and 44 scans from 22 human subjects imaged via multidetector-row CT (MDCT) during breath holds at 85% and 20% of their vital capacity. A quantitative validation was performed with more than 1000 manually identified points selected from inside the vessel segments to assess true positives (TPs) and 1000 points randomly placed outside of the vessels to evaluate false positives (FPs) in each case. On average, for both the high and low volume lung images, 99% of the points was properly marked as vessel and 1% of the points were assessed as FPs. Our hybrid segmentation algorithm provides a highly reliable method of segmenting the combined pulmonary venous and arterial trees which in turn will serve as a critical starting point for further quantitative analysis tasks and aid in our overall goal of establishing a normative atlas of the human lung

    Augmented vessels for quantitative analysis of vascular abnormalities and endovascular treatment planning

    Full text link

    Computational methods to predict and enhance decision-making with biomedical data.

    Get PDF
    The proposed research applies machine learning techniques to healthcare applications. The core ideas were using intelligent techniques to find automatic methods to analyze healthcare applications. Different classification and feature extraction techniques on various clinical datasets are applied. The datasets include: brain MR images, breathing curves from vessels around tumor cells during in time, breathing curves extracted from patients with successful or rejected lung transplants, and lung cancer patients diagnosed in US from in 2004-2009 extracted from SEER database. The novel idea on brain MR images segmentation is to develop a multi-scale technique to segment blood vessel tissues from similar tissues in the brain. By analyzing the vascularization of the cancer tissue during time and the behavior of vessels (arteries and veins provided in time), a new feature extraction technique developed and classification techniques was used to rank the vascularization of each tumor type. Lung transplantation is a critical surgery for which predicting the acceptance or rejection of the transplant would be very important. A review of classification techniques on the SEER database was developed to analyze the survival rates of lung cancer patients, and the best feature vector that can be used to predict the most similar patients are analyzed
    corecore