6 research outputs found

    GANprintR: Improved Fakes and Evaluation of the State of the Art in Face Manipulation Detection

    Full text link
    © 2020 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe availability of large-scale facial databases, together with the remarkable progresses of deep learning technologies, in particular Generative Adversarial Networks (GANs), have led to the generation of extremely realistic fake facial content, raising obvious concerns about the potential for misuse. Such concerns have fostered the research on manipulation detection methods that, contrary to humans, have already achieved astonishing results in various scenarios. In this study, we focus on the synthesis of entire facial images, which is a specific type of facial manipulation. The main contributions of this study are four-fold: i) a novel strategy to remove GAN 'fingerprints' from synthetic fake images based on autoencoders is described, in order to spoof facial manipulation detection systems while keeping the visual quality of the resulting images; ii) an in-depth analysis of the recent literature in facial manipulation detection; iii) a complete experimental assessment of this type of facial manipulation, considering the state-of-the-art fake detection systems (based on holistic deep networks, steganalysis, and local artifacts), remarking how challenging is this task in unconstrained scenarios; and finally iv) we announce a novel public database, named iFakeFaceDB, yielding from the application of our proposed GAN-fingerprint Removal approach (GANprintR) to already very realistic synthetic fake images. The results obtained in our empirical evaluation show that additional efforts are required to develop robust facial manipulation detection systems against unseen conditions and spoof techniques, such as the one proposed in this studyThis work has been supported by projects: PRIMA (H2020-MSCA-ITN-2019-860315), TRESPASS-ETN (H2020-MSCA-ITN2019-860813), BIBECA (RTI2018-101248-B-I00 MINECO/FEDER), BioGuard (Ayudas Fundación BBVA a Equipos de Investigación Cientíifica 2017), Accenture, by NOVA LINCS (UIDB/04516/2020) with the financial support of FCT - Fundação para a Ciência e a Tecnologia, through national funds, and by FCT/MCTES through national funds and co-funded by EU under the project UIDB/EEA/50008/202

    UFPR-Periocular: A Periocular Dataset Collected by Mobile Devices in Unconstrained Scenarios

    Full text link
    Recently, ocular biometrics in unconstrained environments using images obtained at visible wavelength have gained the researchers' attention, especially with images captured by mobile devices. Periocular recognition has been demonstrated to be an alternative when the iris trait is not available due to occlusions or low image resolution. However, the periocular trait does not have the high uniqueness presented in the iris trait. Thus, the use of datasets containing many subjects is essential to assess biometric systems' capacity to extract discriminating information from the periocular region. Also, to address the within-class variability caused by lighting and attributes in the periocular region, it is of paramount importance to use datasets with images of the same subject captured in distinct sessions. As the datasets available in the literature do not present all these factors, in this work, we present a new periocular dataset containing samples from 1,122 subjects, acquired in 3 sessions by 196 different mobile devices. The images were captured under unconstrained environments with just a single instruction to the participants: to place their eyes on a region of interest. We also performed an extensive benchmark with several Convolutional Neural Network (CNN) architectures and models that have been employed in state-of-the-art approaches based on Multi-class Classification, Multitask Learning, Pairwise Filters Network, and Siamese Network. The results achieved in the closed- and open-world protocol, considering the identification and verification tasks, show that this area still needs research and development

    Deep Semantic Segmentation of Natural and Medical Images: A Review

    Full text link
    The semantic image segmentation task consists of classifying each pixel of an image into an instance, where each instance corresponds to a class. This task is a part of the concept of scene understanding or better explaining the global context of an image. In the medical image analysis domain, image segmentation can be used for image-guided interventions, radiotherapy, or improved radiological diagnostics. In this review, we categorize the leading deep learning-based medical and non-medical image segmentation solutions into six main groups of deep architectural, data synthesis-based, loss function-based, sequenced models, weakly supervised, and multi-task methods and provide a comprehensive review of the contributions in each of these groups. Further, for each group, we analyze each variant of these groups and discuss the limitations of the current approaches and present potential future research directions for semantic image segmentation.Comment: 45 pages, 16 figures. Accepted for publication in Springer Artificial Intelligence Revie
    corecore