1,265 research outputs found

    An Adaptive Sampling Scheme to Efficiently Train Fully Convolutional Networks for Semantic Segmentation

    Full text link
    Deep convolutional neural networks (CNNs) have shown excellent performance in object recognition tasks and dense classification problems such as semantic segmentation. However, training deep neural networks on large and sparse datasets is still challenging and can require large amounts of computation and memory. In this work, we address the task of performing semantic segmentation on large data sets, such as three-dimensional medical images. We propose an adaptive sampling scheme that uses a-posterior error maps, generated throughout training, to focus sampling on difficult regions, resulting in improved learning. Our contribution is threefold: 1) We give a detailed description of the proposed sampling algorithm to speed up and improve learning performance on large images. We propose a deep dual path CNN that captures information at fine and coarse scales, resulting in a network with a large field of view and high resolution outputs. We show that our method is able to attain new state-of-the-art results on the VISCERAL Anatomy benchmark

    Keypoint Transfer for Fast Whole-Body Segmentation

    Full text link
    We introduce an approach for image segmentation based on sparse correspondences between keypoints in testing and training images. Keypoints represent automatically identified distinctive image locations, where each keypoint correspondence suggests a transformation between images. We use these correspondences to transfer label maps of entire organs from the training images to the test image. The keypoint transfer algorithm includes three steps: (i) keypoint matching, (ii) voting-based keypoint labeling, and (iii) keypoint-based probabilistic transfer of organ segmentations. We report segmentation results for abdominal organs in whole-body CT and MRI, as well as in contrast-enhanced CT and MRI. Our method offers a speed-up of about three orders of magnitude in comparison to common multi-atlas segmentation, while achieving an accuracy that compares favorably. Moreover, keypoint transfer does not require the registration to an atlas or a training phase. Finally, the method allows for the segmentation of scans with highly variable field-of-view.Comment: Accepted for publication at IEEE Transactions on Medical Imagin

    A comparative evaluation for liver segmentation from spir images and a novel level set method using signed pressure force function

    Get PDF
    Thesis (Doctoral)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2013Includes bibliographical references (leaves: 118-135)Text in English; Abstract: Turkish and Englishxv, 145 leavesDeveloping a robust method for liver segmentation from magnetic resonance images is a challenging task due to similar intensity values between adjacent organs, geometrically complex liver structure and injection of contrast media, which causes all tissues to have different gray level values. Several artifacts of pulsation and motion, and partial volume effects also increase difficulties for automatic liver segmentation from magnetic resonance images. In this thesis, we present an overview about liver segmentation methods in magnetic resonance images and show comparative results of seven different liver segmentation approaches chosen from deterministic (K-means based), probabilistic (Gaussian model based), supervised neural network (multilayer perceptron based) and deformable model based (level set) segmentation methods. The results of qualitative and quantitative analysis using sensitivity, specificity and accuracy metrics show that the multilayer perceptron based approach and a level set based approach which uses a distance regularization term and signed pressure force function are reasonable methods for liver segmentation from spectral pre-saturation inversion recovery images. However, the multilayer perceptron based segmentation method requires a higher computational cost. The distance regularization term based automatic level set method is very sensitive to chosen variance of Gaussian function. Our proposed level set based method that uses a novel signed pressure force function, which can control the direction and velocity of the evolving active contour, is faster and solves several problems of other applied methods such as sensitivity to initial contour or variance parameter of the Gaussian kernel in edge stopping functions without using any regularization term

    NiftyNet: a deep-learning platform for medical imaging

    Get PDF
    Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this application requires substantial implementation effort. Thus, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. NiftyNet provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on TensorFlow and supports TensorBoard visualization of 2D and 3D images and computational graphs by default. We present 3 illustrative medical image analysis applications built using NiftyNet: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. NiftyNet enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications.Comment: Wenqi Li and Eli Gibson contributed equally to this work. M. Jorge Cardoso and Tom Vercauteren contributed equally to this work. 26 pages, 6 figures; Update includes additional applications, updated author list and formatting for journal submissio

    Automatic Multi-organ Segmentation on Abdominal CT with Dense V-networks

    Get PDF
    Automatic segmentation of abdominal anatomy on computed tomography (CT) images can support diagnosis, treatment planning and treatment delivery workflows. Segmentation methods using statistical models and multi-atlas label fusion (MALF) require inter-subject image registrations which are challenging for abdominal images, but alternative methods without registration have not yet achieved higher accuracy for most abdominal organs. We present a registration-free deeplearning- based segmentation algorithm for eight organs that are relevant for navigation in endoscopic pancreatic and biliary procedures, including the pancreas, the GI tract (esophagus, stomach, duodenum) and surrounding organs (liver, spleen, left kidney, gallbladder). We directly compared the segmentation accuracy of the proposed method to existing deep learning and MALF methods in a cross-validation on a multi-centre data set with 90 subjects. The proposed method yielded significantly higher Dice scores for all organs and lower mean absolute distances for most organs, including Dice scores of 0.78 vs. 0.71, 0.74 and 0.74 for the pancreas, 0.90 vs 0.85, 0.87 and 0.83 for the stomach and 0.76 vs 0.68, 0.69 and 0.66 for the esophagus. We conclude that deep-learning-based segmentation represents a registration-free method for multi-organ abdominal CT segmentation whose accuracy can surpass current methods, potentially supporting image-guided navigation in gastrointestinal endoscopy procedures

    AMOS: A Large-Scale Abdominal Multi-Organ Benchmark for Versatile Medical Image Segmentation

    Full text link
    Despite the considerable progress in automatic abdominal multi-organ segmentation from CT/MRI scans in recent years, a comprehensive evaluation of the models' capabilities is hampered by the lack of a large-scale benchmark from diverse clinical scenarios. Constraint by the high cost of collecting and labeling 3D medical data, most of the deep learning models to date are driven by datasets with a limited number of organs of interest or samples, which still limits the power of modern deep models and makes it difficult to provide a fully comprehensive and fair estimate of various methods. To mitigate the limitations, we present AMOS, a large-scale, diverse, clinical dataset for abdominal organ segmentation. AMOS provides 500 CT and 100 MRI scans collected from multi-center, multi-vendor, multi-modality, multi-phase, multi-disease patients, each with voxel-level annotations of 15 abdominal organs, providing challenging examples and test-bed for studying robust segmentation algorithms under diverse targets and scenarios. We further benchmark several state-of-the-art medical segmentation models to evaluate the status of the existing methods on this new challenging dataset. We have made our datasets, benchmark servers, and baselines publicly available, and hope to inspire future research. Information can be found at https://amos22.grand-challenge.org

    Improvement of the female mouse computational model developed at CDTN

    Get PDF
    Small animals, such as mice, have been used in experiments involving ionizing radiation. New preclinical experimental methods often include extensive imaging (MicroCT and/or PET/SPECT) that can result in absorbed dose values considerably high. In addition, assays with theranosticsradiopharmaceuticals administered in small animals have been used to determine the main potential adverse effects and the therapeutic efficacy. For all these mentioned cases, the precise quantification of absorbed doses and the determination of energy deposition patterns are of fundamental importance to qualify or exclude potential radiobiological effects that may interfere with in vivo experiment results. Thus, the development and improvement of mouse phantoms is essential for good small animal dosimetry. In 2021, our group segmented and implemented a female C57BL mouse phantom, called FM_BRA, in the MCNP. The objective of this work was to review the segmentation of the FM_BRA computational model and to identify and segment new organs for an improved version of this phantom. Three different researchers segmented different organs of the model. The masses of the segmented organs were compared with those of the first version. Information on mass or volume of organs from different mouse strains, and more specifically from the C57BL strain, was also obtained from the literature for comparison and to aid in segmentation. The mice image representing a female mouse of the C57BL strain weighing 26 g were kindly provided by the Turku Center for Disease and were manually segmented. The software GIMP® 2.10 was used to select and segment each organ/tissue. The IMAIOS-VET Anatomy website was used as an anatomical basis for the identification of organs/tissues. The IMAGEJ® software was applied to assemble the segmented images into a 3D stack and to convert the segmented images into binary files. The volumes of the segmented organs were measured with a C++ in house program. Corresponding human tissue densities provided in ICRP 110 were used to calculate organ mass from the calculated volumes. Data were compared with literature reports. The number of segmented organs increased from 20 in the old model to 33 in the new models. The masses of the organs segmented in this work, by the different researchers, showed agreement in most cases. However, organs such as the small intestines, bones and trachea still deserve a new round of reviewing
    corecore