1,280 research outputs found

    Vertebra Shape Classification using MLP for Content-Based Image Retrieval

    Get PDF
    A desirable content-based image retrieval (CBIR) system would classify extracted image features to support some form of semantic retrieval. The Lister Hill National Center for Biomedical Communications, an intramural R&D division of the National Library for Medicine (NLM), maintains an archive of digitized X-rays of the cervical and lumbar spine taken as part of the second national health and nutrition examination survey (NHANES II). It is our goal to provide shape-based access to digitized X-rays including retrieval on automatically detected and classified pathology, e.g., anterior osteophytes. This is done using radius of curvature analysis along the anterior portion, and morphological analysis for quantifying protrusion regions along the vertebra boundary. Experimental results are presented for the classification of 704 cervical spine vertebrae by evaluating the features using a multi-layer perceptron (MLP) based approach. In this paper, we describe the design and current status of the content-based image retrieval (CBIR) system and the role of neural networks in the design of an effective multimedia information retrieval system

    Automatic Lumbar Vertebrae Segmentation in Fluoroscopic Images via Optimised Concurrent Hough Transform

    No full text
    Low back pain is a very common problem in the industrialised countries and its associated cost is enormous. Diagnosis of the underlying causes can be extremely difficult. Many studies have focused on mechanical disorders of the spine. Digital videofluoroscopy (DVF) was widely used to obtain images for motion studies. This can provide motion sequences of the lumbar spine, but the images obtained often suffer due to noise, exacerbated by the very low radiation dosage. Thus determining vertebrae position within the image sequence presents a considerable challenge. In this paper, we show how our new approach can automatically detect the positions and borders of vertebrae concurrently, relieving many of the problems experienced in other approaches. First, we use phase congruency to relieve difficulty associated with threshold selection in edge detection of the illumination variant DVF images. Then, our new Hough transform approach is applied to determine the moving vertebrae, concurrently. We include optimisation via a genetic algorithm as without it the extraction of moving multiple vertebrae is computationally daunting. Our results show that this new approach can indeed provide extractions of position and rotation which appear to be of sufficient quality to aid therapy and diagnosis of spinal disorders

    Benchmarking Encoder-Decoder Architectures for Biplanar X-ray to 3D Shape Reconstruction

    Full text link
    Various deep learning models have been proposed for 3D bone shape reconstruction from two orthogonal (biplanar) X-ray images. However, it is unclear how these models compare against each other since they are evaluated on different anatomy, cohort and (often privately held) datasets. Moreover, the impact of the commonly optimized image-based segmentation metrics such as dice score on the estimation of clinical parameters relevant in 2D-3D bone shape reconstruction is not well known. To move closer toward clinical translation, we propose a benchmarking framework that evaluates tasks relevant to real-world clinical scenarios, including reconstruction of fractured bones, bones with implants, robustness to population shift, and error in estimating clinical parameters. Our open-source platform provides reference implementations of 8 models (many of whose implementations were not publicly available), APIs to easily collect and preprocess 6 public datasets, and the implementation of automatic clinical parameter and landmark extraction methods. We present an extensive evaluation of 8 2D-3D models on equal footing using 6 public datasets comprising images for four different anatomies. Our results show that attention-based methods that capture global spatial relationships tend to perform better across all anatomies and datasets; performance on clinically relevant subgroups may be overestimated without disaggregated reporting; ribs are substantially more difficult to reconstruct compared to femur, hip and spine; and the dice score improvement does not always bring a corresponding improvement in the automatic estimation of clinically relevant parameters.Comment: accepted to NeurIPS 202

    Automating Cobb Angle Measurement for Adolescent Idiopathic Scoliosis using Instance Segmentation

    Full text link
    Scoliosis is a three-dimensional deformity of the spine, most often diagnosed in childhood. It affects 2-3% of the population, which is approximately seven million people in North America. Currently, the reference standard for assessing scoliosis is based on the manual assignment of Cobb angles at the site of the curvature center. This manual process is time consuming and unreliable as it is affected by inter- and intra-observer variance. To overcome these inaccuracies, machine learning (ML) methods can be used to automate the Cobb angle measurement process. This paper proposes to address the Cobb angle measurement task using YOLACT, an instance segmentation model. The proposed method first segments the vertebrae in an X-Ray image using YOLACT, then it tracks the important landmarks using the minimum bounding box approach. Lastly, the extracted landmarks are used to calculate the corresponding Cobb angles. The model achieved a Symmetric Mean Absolute Percentage Error (SMAPE) score of 10.76%, demonstrating the reliability of this process in both vertebra localization and Cobb angle measurement

    VertXNet: an ensemble method for vertebral body segmentation and identification from cervical and lumbar spinal X-rays

    Get PDF
    Accurate annotation of vertebral bodies is crucial for automating the analysis of spinal X-ray images. However, manual annotation of these structures is a laborious and costly process due to their complex nature, including small sizes and varying shapes. To address this challenge and expedite the annotation process, we propose an ensemble pipeline called VertXNet. This pipeline currently combines two segmentation mechanisms, semantic segmentation using U-Net, and instance segmentation using Mask R-CNN, to automatically segment and label vertebral bodies in lateral cervical and lumbar spinal X-ray images. VertXNet enhances its effectiveness by adopting a rule-based strategy (termed the ensemble rule) for effectively combining segmentation outcomes from U-Net and Mask R-CNN. It determines vertebral body labels by recognizing specific reference vertebral instances, such as cervical vertebra 2 (‘C2’) in cervical spine X-rays and sacral vertebra 1 (‘S1’) in lumbar spine X-rays. Those references are commonly relatively easy to identify at the edge of the spine. To assess the performance of our proposed pipeline, we conducted evaluations on three spinal X-ray datasets, including two in-house datasets and one publicly available dataset. The ground truth annotations were provided by radiologists for comparison. Our experimental results have shown that the proposed pipeline outperformed two state-of-the-art (SOTA) segmentation models on our test dataset with a mean Dice of 0.90, vs. a mean Dice of 0.73 for Mask R-CNN and 0.72 for U-Net. We also demonstrated that VertXNet is a modular pipeline that enables using other SOTA model, like nnU-Net to further improve its performance. Furthermore, to evaluate the generalization ability of VertXNet on spinal X-rays, we directly tested the pre-trained pipeline on two additional datasets. A consistently strong performance was observed, with mean Dice coefficients of 0.89 and 0.88, respectively. In summary, VertXNet demonstrated significantly improved performance in vertebral body segmentation and labeling for spinal X-ray imaging. Its robustness and generalization were presented through the evaluation of both in-house clinical trial data and publicly available datasets

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Development of ultrasound to measure deformation of functional spinal units in cervical spine

    Full text link
    Neck pain is a pervasive problem in the general population, especially in those working in vibrating environments, e.g. military troops and truck drivers. Previous studies showed neck pain was strongly associated with the degeneration of intervertebral disc, which is commonly caused by repetitive loading in the work place. Currently, there is no existing method to measure the in-vivo displacement and loading condition of cervical spine on the site. Therefore, there is little knowledge about the alternation of cervical spine functionality and biomechanics in dynamic environments. In this thesis, a portable ultrasound system was explored as a tool to measure the vertebral motion and functional spinal unit deformation. It is hypothesized that the time sequences of ultrasound imaging signals can be used to characterize the deformation of cervical spine functional spinal units in response to applied displacements and loading. Specifically, a multi-frame tracking algorithm is developed to measure the dynamic movement of vertebrae, which is validated in ex-vivo models. The planar kinematics of the functional spinal units is derived from a dual ultrasound system, which applies two ultrasound systems to image C-spine anteriorly and posteriorly. The kinematics is reconstructed from the results of the multi-frame movement tracking algorithm and a method to co-register ultrasound vertebrae images to MRI scan. Using the dual ultrasound, it is shown that the dynamic deformation of functional spinal unit is affected by the biomechanics properties of intervertebral disc ex-vivo and different applied loading in activities in-vivo. It is concluded that ultrasound is capable of measuring functional spinal units motion, which allows rapid in-vivo evaluation of C-spine in dynamic environments where X-Ray, CT or MRI cannot be used.2020-02-20T00:00:00

    Classification of cervical spine fractures using 8 variants EfficientNet with transfer learning

    Get PDF
    A part of the nerves that govern the human body are found in the spinal cord, and a fracture of the upper cervical spine (segment C1) can cause major injury, paralysis, and even death. The early detection of a cervical spine fracture in segment C1 is critical to the patient’s life. Imaging the spine using contemporary medical equipment, on the other hand, is time-consuming, costly, private, and often not available in mainstream medicine. To improve diagnosis speed, efficiency, and accuracy, a computer-assisted diagnostics system is necessary. A deep neural network (DNN) model was employed in this study to recognize and categorize pictures of cervical spine fractures in segment C1. We used EfficientNet from version B0 to B7 to detect the location of the fracture and assess whether a fracture in the C1 region of the cervical spine exists. The patient data group with over 350 picture slices developed the most accurate model utilizing the EfficientNet architecture version B6, according to the findings of this experiment. Validation accuracy is 99.4%, whereas training accuracy is 98.25%. In the testing method using test data, the accuracy value is 99.25%, the precision value is 94.3%, the recall value is 98%, and the F1-score value is 96%
    corecore