1,764 research outputs found

    Multimodal Grasp Planner for Hybrid Grippers in Cluttered Scenes

    Get PDF
    Grasping a variety of objects is still an open problem in robotics, especially for cluttered scenarios. Multimodal grasping has been recognized as a promising strategy to improve the manipulation capabilities of a robotic system. This work presents a novel grasp planning algorithm for hybrid grippers that allows for multiple grasping modalities. In particular, the planner manages two-finger grasps, single or double suction grasps, and magnetic grasps. Grasps for different modalities are geometrically computed based on the cuboid and the material properties of the objects in the clutter. The presented framework is modular and can leverage any 6D pose estimation or material segmentation network as far as they satisfy the required interface. Furthermore, the planner can be applied to any (hybrid) gripper, provided the gripper clearance, finger width, and suction diameter. The approach is fast and has a low computational burden, as it uses geometric computations for grasp synthesis and selection. The performance of the system has been assessed with an experimental campaign in three manipulation scenarios of increasing difficulty using the objects of the YCB dataset and the DLR hybrid-compliant gripper

    2D-3D registration of CT vertebra volume to fluoroscopy projection: A calibration model assessment (doi:10.1155/2010/806094)

    Get PDF
    This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1?mm for displacements parallel to the fluoroscopic plane, and of order of 10?mm for the orthogonal displacement.<br/

    Human-Robot Collaboration as a new paradigm in circular economy for WEEE management

    Get PDF
    E-waste is a priority waste stream as identified by the European Commission due to fast technological changes and eagerness of consumers to acquire new products. The value chain of the Waste on Electric and Electronic Equipment (WEEE) has to face several challenges: the EU directives requesting collection targets for 2019–2022, the costs of disassembly processes which is highly dependent on the applied technology and type of discarded device, and the sale of the obtained components and/or raw materials, with market prices varying according to uncontrolled variables at world level. This paper presents a human-robot collaboration for a recycling process where tasks are opportunistically assigned to either a human-being or a robot depending on the condition of the discarded electronic device. This solution presents some important advantages; i.e. tedious and dangerous tasks are assigned to robots whereas more value-added tasks are allocated to humans, thus preserving jobs and increasing job satisfaction. Furthermore, first results from a prototype show greater productivity and profitable projected investment

    Augmented Virtuality Data Annotation and Human-in-the-Loop Refinement for RGBD Data in Industrial Bin-Picking Scenarios

    Get PDF
    Beyond conventional automated tasks, autonomous robot capabilities aside to human cognitive skills are gaining importance. This comprises goods commissioning and material supply in intralogistics as well as material feeding and assembly operations in production. Deep learning-based computer vision is considered as enabler for autonomy. Currently, the effort to generate specific datasets is challenging. Adaptation of new components often also results in downtimes. The objective of this paper is to propose an augmented virtuality (AV) based RGBD data annotation and refinement method. The approach reduces required effort in initial dataset generation to enable prior system commissioning and enables dataset quality improvement up to operational readiness during ramp-up. In addition, remote fault intervention through a teleoperation interface is provided to increase operational system availability. Several components within a real-world experimental bin-picking setup serve for evaluation. The results are quantified by comparison to established annotation methods and through known evaluation metrics for pose estimation in bin-picking scenarios. The results enable to derive accurate and more time-efficient data annotation for different algorithms. The AV approach shows a noticeable reduction in required effort and timespan for annotation as well as dataset refinement

    RGBDTAM: A Cost-Effective and Accurate RGB-D Tracking and Mapping System

    Full text link
    Simultaneous Localization and Mapping using RGB-D cameras has been a fertile research topic in the latest decade, due to the suitability of such sensors for indoor robotics. In this paper we propose a direct RGB-D SLAM algorithm with state-of-the-art accuracy and robustness at a los cost. Our experiments in the RGB-D TUM dataset [34] effectively show a better accuracy and robustness in CPU real time than direct RGB-D SLAM systems that make use of the GPU. The key ingredients of our approach are mainly two. Firstly, the combination of a semi-dense photometric and dense geometric error for the pose tracking (see Figure 1), which we demonstrate to be the most accurate alternative. And secondly, a model of the multi-view constraints and their errors in the mapping and tracking threads, which adds extra information over other approaches. We release the open-source implementation of our approach 1 . The reader is referred to a video with our results 2 for a more illustrative visualization of its performance
    corecore