296,002 research outputs found
Seeds Buffering for Information Spreading Processes
Seeding strategies for influence maximization in social networks have been
studied for more than a decade. They have mainly relied on the activation of
all resources (seeds) simultaneously in the beginning; yet, it has been shown
that sequential seeding strategies are commonly better. This research focuses
on studying sequential seeding with buffering, which is an extension to basic
sequential seeding concept. The proposed method avoids choosing nodes that will
be activated through the natural diffusion process, which is leading to better
use of the budget for activating seed nodes in the social influence process.
This approach was compared with sequential seeding without buffering and single
stage seeding. The results on both real and artificial social networks confirm
that the buffer-based consecutive seeding is a good trade-off between the final
coverage and the time to reach it. It performs significantly better than its
rivals for a fixed budget. The gain is obtained by dynamic rankings and the
ability to detect network areas with nodes that are not yet activated and have
high potential of activating their neighbours.Comment: Jankowski, J., Br\'odka, P., Michalski, R., & Kazienko, P. (2017,
September). Seeds Buffering for Information Spreading Processes. In
International Conference on Social Informatics (pp. 628-641). Springe
Analysing BitTorrent's seeding strategies
BitTorrent is a typical peer-to-peer (P2P) file distribution application that has gained tremendous popularity in recent years. A considerable amount of research exists regarding BitTorrent’s choking algorithm, which has proved to be effective in preventing freeriders. However, the effect of the seeding strategy on the resistance to freeriders in BitTorrent has been largely overlooked. In addition to this, a category of selfish leechers (termed exploiters), who leave the overlay immediately after completion, has never been taken into account in the previous research. In this paper two popular seeding strategies, the Original Seeding Strategy (OSS) and the Time- based Seeding Strategy (TSS), are chosen and we study via mathematical models and simulation their effects on freeriders and exploiters in BitTorrent networks. The mathematical model is verified and we discover that both freeriders and exploiters impact on system performance, despite the seeding strategy that is employed. However, a selfish-leechers threshold is identified; once the threshold is exceeded, we find that TSS outperforms OSS – that is, TSS reduces the negative impact of selfish lechers more effectively than OSS. Based on these results we discuss the choice of seeding strategy and speculate as to how more effective BitTorrent-based file distribu- tion applications can be built
Maximizing Spectral Flux from Self-Seeding Hard X-ray FELs
Fully coherent x-rays can be generated by self-seeding x-ray free-electron
lasers (XFELs). Self-seeding by a forward Bragg diffraction (FBD) monochromator
has been recently proposed [1] and demonstrated [2]. Characteristic time To of
FBD determines the power, spectral, and time characteristics of the FBD seed
[3]. Here we show that for a given electron bunch with duration sigma_e the
spectral flux of the self-seeding XFEL can be maximized, and the spectral
bandwidth can be respectively minimized by choosing To ~ sigma_e/pi and by
optimizing the electron bunch delay tau_e. The choices of To and tau_e are not
unique. In all cases, the maximum value of the spectral flux and the minimum
bandwidth are primarily determined by sigma_e. Two-color seeding takes place To
>> sigma_e/\pi. The studies are performed, for a Gaussian electron bunch
distribution with the parameters, close to those used in the short-bunch
(sigma_e ~ 5 fs) and long-bunch (sigma_e ~ 20 fs) operation modes of the LCLS
XFEL
Residual Action of Slow Release Systemic Insecticides on \u3ci\u3eRhopalosiphum Padi\u3c/i\u3e (Homoptera: Aphididae) on Wheat
Slow release formulations of acephate and carbofuran encapsulated in pearl corn starch or corn flour granules were applied to the soil at seeding time of potted \u27Caldwell\u27 wheat in the laboratory. Dosages of these insecticides were adjusted to a standard of IO kg/ha of a 10 10 granular formulation of carbofuran. The residual action of these insecticide treatments against Rhopalosiphum padi were compared with those obtained with that of carbofuran 150 at corresponding dosages and foliar sprays of solutions of acephate (25 10 EC) at 0.2 10 and carbofuran (4F) at 1.25 10, applied 12 d after seedling emergence. The residual action of carbofuran 150, which controlled R. padi since seedling emergence, lasted 28.5 d. The slow release granular formulations of carbofuran began to provide control (\u3e 50 10 aphid mortality) on days 13.3 and 17.9 after seeding. They controlled the insect until days 31.6 and 35.5 after seeding. The two corresponding granular formulations of acephate began to provide control on days 15.0 and 17.0 after seeding and con trolled the aphids until days 31.5 and 32.8 after seeding. The foliar sprays of acephate and carbofuran provided control for 18.3 and 36.2 d from application, respectively. The slow release granular formulations provided control of R. padi, an important vector of barley yellow dwarf virus, during early. stages of wheat development
LDA seeding system for the Langley Low Turbulence Pressure Tunnel
A Laser Velocimetry (LV) seeding system was specifically developed for the Langley Low Turbulence Wind Tunnel (LTPT), and it has been successfully used for LV measurements in two major tests (Juncture Flow Experiment and Gortler Experiment). The LTPT is capable of operating at Mach numbers from 0.05 to 0.50 and unit Reynolds numbers from 100,000 to 15,000,000 per foot. The test section is 3 feet wide and 7.5 feet high. The turbulence level in the test section is relatively low because of the high contraction ratio and because of the nine turbulence reduction screens in the settling chamber. A primary requirement of the seeding system was that the seeding material not contaminate or damage in any way these screens. Both solid and liquid seeding systems were evaluated, and the results are presented. They can provide some guidelines for setting up seeding systems in other similar tunnels
Winter Canola Planting Date x Seeding Rate Trial
Because winter canola is a relatively new crop for the Northeastern United States, optimal planting dates for winter canola have not yet been established for this region. In addition, the impact of seeding rate on winter survival remains unclear for our region. Therefore, the goal of this project was to determine the impact of planting date and seeding rate on winter canola survival, plant characteristics, and seed and oil yields. Winter canola is planted in late summer and harvested the following summer. Getting canola planted as early as possible is often recommended for Midwest producers, but growers in the Northeast struggle with timing canola seeding after harvesting another crop, as well as wet fall conditions for planting. In addition, seeding at a higher or lower rate may impact the survival of the crop, its growth the following spring, and ultimately seed and oil yields. While the data presented are only representative of one year, this information can be combined with other research to aid in making planting decisions for canola in the Northeast
Recommended from our members
Soft X-ray seeding studies for the SLAC Linac Coherent Light Source II
We present the results from studies of soft X-ray seeding options for the LCLS-II X-ray free electron laser (FEL) at SLAC. The LCLS-II will use superconducting accelerator technology to produce X-ray pulses at up to 1 MHz repetition rate using 4 GeV electron beams. If properly seeded, these pulses will be nearly fully coherent, and highly stable in photon energy, bandwidth, and intensity, thus enabling unique experiments with intense high-resolution soft X-rays. Given the expected electron beam parameters from start to end simulations and predicted FEL performance, our studies reveal echo enabled harmonic generation (EEHG) and soft X-ray self-seeding (SXRSS) as promising and complementary seeding methods. We find that SXRSS has the advantage of simplicity and will deliver 5-35 times higher spectral brightness than EEHG in the 1-2 nm range, but lacks some of the potential for phase-stable multipulse and multicolor FEL operations enabled by external laser seeding with EEHG
Recommended from our members
Different Amyloid-β Self-Assemblies Have Distinct Effects on Intracellular Tau Aggregation.
Alzheimer's disease (AD) pathology is characterized by the aggregation of beta-amyloid (Aβ) and tau in the form of amyloid plaques and neurofibrillary tangles in the brain. It has been found that a synergistic relationship between these two proteins may contribute to their roles in disease progression. However, how Aβ and tau interact has not been fully characterized. Here, we analyze how tau seeding or aggregation is influenced by different Aβ self-assemblies (fibrils and oligomers). Our cellular assays utilizing tau biosensor cells show that transduction of Aβ oligomers into the cells greatly enhances seeded tau aggregation in a concentration-dependent manner. In contrast, transduced Aβ fibrils slightly reduce tau seeding while untransduced Aβ fibrils promote it. We also observe that the transduction of α-synuclein fibrils, another amyloid protein, has no effect on tau seeding. The enhancement of tau seeding by Aβ oligomers was confirmed using tau fibril seeds derived from both recombinant tau and PS19 mouse brain extracts containing human tau. Our findings highlight the importance of considering the specific form and cellular location of Aβ self-assembly when studying the relationship between Aβ and tau in future AD therapeutic development
- …
