12 research outputs found

    Intelligent OFDM telecommunication system. Part 1. Model of complex and quaternion systems

    Get PDF
    In this paper, we aim to investigate the superiority and practicability of many-parameter transforms (MPTs) from the physical layer security (PHY-LS) perspective. We propose novel Intelligent OFDM-telecommunication systems based on complex and quaternion MPTs. The new systems use inverse MPT (IMPT) for modulation at the transmitter and MPT for demodulation at the receiver. The purpose of employing the MPT is to improve: 1) the PHY-LS of wireless transmissions against to the wide-band anti-jamming and anti-eavesdropping communication; 2) the bit error rate (BER) performance with respect to the conventional OFDM-TCS; 3) the peak to average power ratio (PAPR). Each MPT depends on finite set of independent parameters (angles). When parameters are changed, many-parametric transform is also changed taking form of a set known (and unknown) orthogonal (or unitary) transforms. For this reason, the concrete values of parameters are specific "key" for entry into OFDM-TCS. Vector of parameters belong to multi-dimension torus space. Scanning of this space for find out the "key" (the concrete values of parameters) is hard problem. MPT has the form of the product of the Jacobi rotation matrixes and it describes a fast algorithm for MPT. The main advantage of using MPT in OFDM TCS is that it is a very flexible anti-eavesdropping and anti-jamming Intelligent OFDM TCS. To the best of our knowledge, this is the first work that utilizes the MPT theory to facilitate the PHY-LS through parameterization of unitary transforms. © 2019 IOP Publishing Ltd. All rights reserved

    Early-Enact

    Get PDF
    These days the Present generation is exaggerated with the mobile devices due to the breakthroughs of auxiliary features in the modern devices such as mobile phones, tablets, etc. Now a day’s each and every handset is collaborated with the contemporary technologies such as Wi-Fi, GPS, and 4G Connectivity. The primary idea of the Early-Enact Mobile application is to develop an android based application which enable the family of university to register with their personal information and chatter with the Wi-Fi based intranet application with their group of Co-users who are already registered with the Early-Enact mobile application. Using this system everyone in the university can register into the Early-Enact Mobile application by which users and co-users across the university can connect. The system involves both the devices to be tied in to a same Wi-Fi network. The end-users should install this application on the devices which they are using by which they can use the avails of the Early-Enact Mobile application. As a squad, we are developing this Early-Enact Mobile application to display the pictures which are interested in a user to keep the background of his mobile application along with the quotes of a famous personality. In this Android mobile application, a user can add, edit and delete the pictures in the application according to his personal opinion by which the user wants his mobile to be more attractive than the co-user mobile by using this application. The Main characteristic of Early-Enact intranet Wi-Fi chatting application enables the end-users such as the group members of the university can connect each other by sending and receiving the messages

    Intelligent OFDM telecommunication system. Part 1. Model of system

    Get PDF
    In this paper, we aim to investigate the superiority and practicability of many- parameter transforms (MPTs) from the physical layer security (PHY-LS) perspective. We propose novel Intelligent OFDM-telecommunication systems based on MPT. The new systems use Inverse MPT (IMPT) for modulation at the transmitter and Direct MPT (DMPT) for demodulation at the receiver. The purpose of employing the MPT is to improve: 1) the PHY- LS of wireless transmissions against to the wide-band anti-jamming and anti-eavesdropping communication; 2) the bit error rate (BER) performance with respect to the conventional OFDM-TCS; 3) the peak to average power ratio (PAPR). Each MPT depends on finite set of independent parameters (angles), which could be changed independently of one another. When parameters are changed, MPT is also changed taking form of a set known (and unknown) orthogonal (or unitary) transforms. For this reason, the concrete values of parameters are specific “key” for entry into OFDM-TCS. Vector of parameters belong to multi-dimension torus space. Scanning of this space for find out the “key” (the concrete values of parameters) is hard problem. MPT has the form of the product of the sparse Jacobi rotation matrixes and it describes a fast algorithm for MPT. The main advantage of using MPT in OFDM TCS is that it is a very flexible anti-eavesdropping and anti-jamming Intelligent OFDM TCS. To the best of our knowledge, this is the first work that utilizes the MPT theory to facilitate the PHY-LS through parameterization of unitary transforms.This work was supported by the RFBR grant 17-07-00886 and by the Ural State Forest Engineering’s Center of Excellence in «Quantum and Classical Information Technologies for Remote Sensing Systems

    Trust aware system for social networks: A comprehensive survey

    Get PDF
    Social networks are the platform for the users to get connected with other social network users based on their interest and life styles. Existing social networks have millions of users and the data generated by them are huge and it is difficult to differentiate the real users and the fake users. Hence a trust worthy system is recommended for differentiating the real and fake users. Social networking enables users to send friend requests, upload photos and tag their friends and even suggest them the web links based on the interest of the users. The friends recommended, the photos tagged and web links suggested may be a malware or an untrusted activity. Users on social networks are authorised by providing the personal data. This personal raw data is available to all other users online and there is no protection or methods to secure this data from unknown users. Hence to provide a trustworthy system and to enable real users activities a review on different methods to achieve trustworthy social networking systems are examined in this paper

    A Game Theoretic Approach for Privacy Preserving Model in IoT-Based Transportation

    Get PDF
    International audienceInternet of Things (IoT) applications using sensors and actuators raise new privacy related threats such as drivers and vehicles tracking and profiling. These threats can be addressed by developing adaptive and context-aware privacy protection solutions to face the environmental constraints (memory, energy, communication channel, etc.), which cause a number of limitations of applying cryptographic schemes. This paper proposes a privacy preserving solution in ITS context relying on a game theory model between two actors (data holder and data requester) using an incentive motivation against a privacy concession, or leading an active attack. We describe the game elements (actors, roles, states, strategies, and transitions), and find an equilibrium point reaching a compromise between privacy concessions and incentive motivation. Finally, we present numerical results to analyze and evaluate the game theory-based theoretical formulation

    Security and Privacy in Mobile Social Networks

    No full text
    corecore