15,733 research outputs found

    EsPRESSo: Efficient Privacy-Preserving Evaluation of Sample Set Similarity

    Full text link
    Electronic information is increasingly often shared among entities without complete mutual trust. To address related security and privacy issues, a few cryptographic techniques have emerged that support privacy-preserving information sharing and retrieval. One interesting open problem in this context involves two parties that need to assess the similarity of their datasets, but are reluctant to disclose their actual content. This paper presents an efficient and provably-secure construction supporting the privacy-preserving evaluation of sample set similarity, where similarity is measured as the Jaccard index. We present two protocols: the first securely computes the (Jaccard) similarity of two sets, and the second approximates it, using MinHash techniques, with lower complexities. We show that our novel protocols are attractive in many compelling applications, including document/multimedia similarity, biometric authentication, and genetic tests. In the process, we demonstrate that our constructions are appreciably more efficient than prior work.Comment: A preliminary version of this paper was published in the Proceedings of the 7th ESORICS International Workshop on Digital Privacy Management (DPM 2012). This is the full version, appearing in the Journal of Computer Securit

    Systematic Review on Security and Privacy Requirements in Edge Computing: State of the Art and Future Research Opportunities

    Get PDF
    Edge computing is a promising paradigm that enhances the capabilities of cloud computing. In order to continue patronizing the computing services, it is essential to conserve a good atmosphere free from all kinds of security and privacy breaches. The security and privacy issues associated with the edge computing environment have narrowed the overall acceptance of the technology as a reliable paradigm. Many researchers have reviewed security and privacy issues in edge computing, but not all have fully investigated the security and privacy requirements. Security and privacy requirements are the objectives that indicate the capabilities as well as functions a system performs in eliminating certain security and privacy vulnerabilities. The paper aims to substantially review the security and privacy requirements of the edge computing and the various technological methods employed by the techniques used in curbing the threats, with the aim of helping future researchers in identifying research opportunities. This paper investigate the current studies and highlights the following: (1) the classification of security and privacy requirements in edge computing, (2) the state of the art techniques deployed in curbing the security and privacy threats, (3) the trends of technological methods employed by the techniques, (4) the metrics used for evaluating the performance of the techniques, (5) the taxonomy of attacks affecting the edge network, and the corresponding technological trend employed in mitigating the attacks, and, (6) research opportunities for future researchers in the area of edge computing security and privacy

    Efficient Privacy Preserving Viola-Jones Type Object Detection via Random Base Image Representation

    Full text link
    A cloud server spent a lot of time, energy and money to train a Viola-Jones type object detector with high accuracy. Clients can upload their photos to the cloud server to find objects. However, the client does not want the leakage of the content of his/her photos. In the meanwhile, the cloud server is also reluctant to leak any parameters of the trained object detectors. 10 years ago, Avidan & Butman introduced Blind Vision, which is a method for securely evaluating a Viola-Jones type object detector. Blind Vision uses standard cryptographic tools and is painfully slow to compute, taking a couple of hours to scan a single image. The purpose of this work is to explore an efficient method that can speed up the process. We propose the Random Base Image (RBI) Representation. The original image is divided into random base images. Only the base images are submitted randomly to the cloud server. Thus, the content of the image can not be leaked. In the meanwhile, a random vector and the secure Millionaire protocol are leveraged to protect the parameters of the trained object detector. The RBI makes the integral-image enable again for the great acceleration. The experimental results reveal that our method can retain the detection accuracy of that of the plain vision algorithm and is significantly faster than the traditional blind vision, with only a very low probability of the information leakage theoretically.Comment: 6 pages, 3 figures, To appear in the proceedings of the IEEE International Conference on Multimedia and Expo (ICME), Jul 10, 2017 - Jul 14, 2017, Hong Kong, Hong Kon

    Anonymous subject identification and privacy information management in video surveillance

    Get PDF
    The widespread deployment of surveillance cameras has raised serious privacy concerns, and many privacy-enhancing schemes have been recently proposed to automatically redact images of selected individuals in the surveillance video for protection. Of equal importance are the privacy and efficiency of techniques to first, identify those individuals for privacy protection and second, provide access to original surveillance video contents for security analysis. In this paper, we propose an anonymous subject identification and privacy data management system to be used in privacy-aware video surveillance. The anonymous subject identification system uses iris patterns to identify individuals for privacy protection. Anonymity of the iris-matching process is guaranteed through the use of a garbled-circuit (GC)-based iris matching protocol. A novel GC complexity reduction scheme is proposed by simplifying the iris masking process in the protocol. A user-centric privacy information management system is also proposed that allows subjects to anonymously access their privacy information via their iris patterns. The system is composed of two encrypted-domain protocols: The privacy information encryption protocol encrypts the original video records using the iris pattern acquired during the subject identification phase; the privacy information retrieval protocol allows the video records to be anonymously retrieved through a GC-based iris pattern matching process. Experimental results on a public iris biometric database demonstrate the validity of our framework
    corecore