2,104 research outputs found

    Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

    Full text link
    We introduce SysML-Sec, a SysML-based Model-Driven Engineering environment aimed at fostering the collaboration between system designers and security experts at all methodological stages of the development of an embedded system. A central issue in the design of an embedded system is the definition of the hardware/software partitioning of the architecture of the system, which should take place as early as possible. SysML-Sec aims to extend the relevance of this analysis through the integration of security requirements and threats. In particular, we propose an agile methodology whose aim is to assess early on the impact of the security requirements and of the security mechanisms designed to satisfy them over the safety of the system. Security concerns are captured in a component-centric manner through existing SysML diagrams with only minimal extensions. After the requirements captured are derived into security and cryptographic mechanisms, security properties can be formally verified over this design. To perform the latter, model transformation techniques are implemented in the SysML-Sec toolchain in order to derive a ProVerif specification from the SysML models. An automotive firmware flashing procedure serves as a guiding example throughout our presentation.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    External attacks on automotive system through wireless communication channels

    Get PDF
    The reliance of today’s automotive system on electronics control system is expected to make the cars to be state-of-the-art vehicle. However, this technology dependency results in the cars to be exposed to attacks by the hacker through the manipulation of electronics system. Previously, for the attacker to compromise car’s system, he/she must access the car directly and internally. However, with the incorporation of wireless technologies such as Bluetooth and cellular into automotive system for example in its telematic units, the attacks are evolved from internal attacks into remote attack where the adversary does not have to internally access the car’s system. This paper analyses the vulnerabilities of the automotive system by the remote attacks performed through Bluetooth and cellular. Once the vulnerabilities were analyzed, the threats imposed by these vulnerabilities are accessed. Two scenarios namely theft and surveillance are used to exemplify the threats that are carried by the vulnerability of the automotive system to the remote attacks. From the vulnerability analysis and threat assessment, it can be deduced that the automotive system is vulnerable to attacks and proper countermeasure must be taken to curb the implication from the attacks.Keywords: Hardware Trojan, Insertion, Third-part IP, Trus

    Machine learning and blockchain technologies for cybersecurity in connected vehicles

    Get PDF
    Future connected and autonomous vehicles (CAVs) must be secured againstcyberattacks for their everyday functions on the road so that safety of passengersand vehicles can be ensured. This article presents a holistic review of cybersecurityattacks on sensors and threats regardingmulti-modal sensor fusion. A compre-hensive review of cyberattacks on intra-vehicle and inter-vehicle communicationsis presented afterward. Besides the analysis of conventional cybersecurity threatsand countermeasures for CAV systems,a detailed review of modern machinelearning, federated learning, and blockchain approach is also conducted to safe-guard CAVs. Machine learning and data mining-aided intrusion detection systemsand other countermeasures dealing with these challenges are elaborated at theend of the related section. In the last section, research challenges and future direc-tions are identified

    An Extended Survey on Vehicle Security

    Full text link
    The advanced electronic units with wireless capabilities inside modern vehicles have, enhanced the driving experience, but also introduced a myriad of security problems due to the inherent limitations of the internal communication protocol. In the last two decades, a number of security threats have been identified and accordingly, security measures have been proposed. In this paper, we provide a comprehensive review of security threats and countermeasures for the ubiquitous CAN bus communication protocol. Our review of the existing literature leads us to a observation of an overlooked simple, cost-effective, and incrementally deployable solution. Essentially, a reverse firewall, referred to in this paper as an icewall, can be an effective defense against a major class of packet-injection attacks and many denial of service attacks. We cover the fundamentals of the icewall in this paper. Further, by introducing the notion of human-in-the-loop, we discuss the subtle implications to its security when a human driver is accounted for
    • …
    corecore