830 research outputs found

    Mitigating External Threats in Wireless Local Area Networks

    Get PDF
    As computer networks become more critical to enterprises, it is inevitable that efficient security policies are designed, case in point: wireless networks, in order to effectively ensure the confidentiality, availability, and integrity of the data traversing these networks. The primary objective of this paper is to appropriately simulate an enterprise network, and evaluate the threats, and possible mitigation approaches applicable. An analysis of an enterprise WLAN (Wireless Local Area Network) was carried out, to identify relevant vulnerabilities, and possible countermeasures against these threats. The primary threats analysed were those possible by an external adversary. Upon identification of said threats, a security model was developed, so as to improve enterprise network security, and ensure the levels are optimum. In addition, a number of the principles involved are applicable to non-wireless networks.   Keywords: WLAN, Wireless, Security, WPA 2, IEEE 802.11. 

    Denial of service attacks and challenges in broadband wireless networks

    Get PDF
    Broadband wireless networks are providing internet and related services to end users. The three most important broadband wireless technologies are IEEE 802.11, IEEE 802.16, and Wireless Mesh Network (WMN). Security attacks and vulnerabilities vary amongst these broadband wireless networks because of differences in topologies, network operations and physical setups. Amongst the various security risks, Denial of Service (DoS) attack is the most severe security threat, as DoS can compromise the availability and integrity of broadband wireless network. In this paper, we present DoS attack issues in broadband wireless networks, along with possible defenses and future directions

    Wireless Intrusion Prevention Systems

    Get PDF
    The wireless networks have changed the way organizations work and offered a new range of possibilities, but at the same time they introduced new security threats. While an attacker needs physical access to a wired network in order to launch an attack, a wireless network allows anyone within its range to passively monitor the traffic or even start an attack. One of the countermeasures can be the use of Wireless Intrusion Prevention Systems.Network security, IDS, IPS, wireless intrusion detection, wireless intrusion prevention.

    WISP: a wireless information security portal

    Get PDF
    M.Sc.Wireless networking is a fairly new technology that is important in information technology (IT). Hotels, Airports, Coffee shops, and homes are all installing wireless networks at a record pace, making wireless networks the best choice for consumers. This popularity of wireless networks is because of the affordability of wireless networks devices, and the easy installation [11]. In spite of the popularity of the wireless networks, one factor that has prevented them from being even more widespread can be summed up in a single word: security. It comes as no surprise that these two – wireless and security – converge to create one of the most important topics in the IT industry today [11]. Wireless networks by nature bring about new challenges unique to its environment. One example of these new challenges is: “Signal overflow beyond physical walls”, and with these kinds of new challenges unique to wireless networks, we have new security risks. Hence wireless networks lend themselves to a host of attack possibilities and risks. That is because wireless networks provide a convenient network access point for an attacker, potentially beyond the physical security controls of the organization [7]. Therefore it is challenging for managers to introduce wireless networks and properly manage the security of wireless networks, Security problems of wireless networks are the main reason for wireless networks not being rolled out optimally [1]. In this dissertation, we aim to present to both specialist and non–specialists in the IT industry the information needed to protect a wireless network. We will first identify and discuss the different security requirements of wireless networks. After that we shall examine the technology that helps make wireless networks secure, and describe the type of attacks against wireless networks and defense techniques to secure wireless networks. The research will concentrate on wireless LANs (Local Area Networks), and leading wireless LAN protocols and standards. The result of the research will be used to create WISP (A Wireless Information Security Portal). WISP will be a tool to support the management of a secure wireless network, and help assure the confidentiality, integrity, and availability of the information systems in a wireless network environment

    An Evaluation Framework for Adaptive Security for the IoT in eHealth

    Get PDF
    The work presented here has been carried out in the project ASSET – Adaptive Security for Smart Internet of Things in eHealth (2012–2015) funded by the Research Council of Norway in the VERDIKT programme. WThe work presented here has been carried out in the project ASSET – Adaptive Security for Smart Internet of Things in eHealth (2012–2015) funded by the Research Council of Norway in the VERDIKT programme. W—We present an assessment framework to evaluate adaptive security algorithms specifically for the Internet of Things (IoT) in eHealth applications. The successful deployment of the IoT depends on ensuring security and privacy, which need to adapt to the processing capabilities and resource use of the IoT. We develop a framework for the assessment and validation of context-aware adaptive security solutions for the IoT in eHealth that can quantify the characteristics and requirements of a situation. We present the properties to be fulfilled by a scenario to assess and quantify characteristics for the adaptive security solutions for eHealth. We then develop scenarios for patients with chronic diseases using biomedical sensors. These scenarios are used to create storylines for a chronic patient living at home or being treated in the hospital. We show numeric examples for how to apply our framework. We also present guidelines how to integrate our framework to evaluating adaptive security solutionsThe work presented here has been carried out in the project ASSET – Adaptive Security for Smart Internet of Things in eHealth (2012–2015) funded by the Research Council of Norway in the VERDIKT programme

    IEEE 802.11 i Security and Vulnerabilities

    Get PDF
    Despite using a variety of comprehensive preventive security measures, the Robust Secure Networks (RSNs) remain vulnerable to a number of attacks. Failure of preventive measures to address all RSN vulnerabilities dictates the need for enhancing the performance of Wireless Intrusion Detection Systems (WIDSs) to detect all attacks on RSNs with less false positive and false negative rates
    • …
    corecore