2 research outputs found

    IoT4Fun Rapid Prototyping Toolkit for Smart Toys

    Get PDF
    Rapid prototyping tools turn the design of smart toys faster and easier for creative teams. Appropriate tools for smart toys should meet a list of requirements, which include distributed data collection and adaptability for assorted toy shapes and size. The IoT4Fun toolkit innovates by mixing the embedded, modular, and plug-and-play approaches. It supports motion tracking data, wireless communication, and contactless identification. IoT4Fun demonstrates its effectiveness to design a variety of smart toy solutions by fitting into a hula-hoop toy until spherical, cubic, and wearable shapes. Solutions connect with either mobile applications or other toys and play rules range from open-ended to closed behaviors. End-users exhaustively tested developed solutions, and technical assessment evaluates their integrity after playtesting sessions. Results show comparative data on battery consumption and vulnerabilities threats for data security and privacy of each design. Future versions of IoT4Fun can benefit from miniaturization, robustness, and reliability improvements

    Security Analysis and Evaluation of Smart Toys

    Get PDF
    During the last years, interconnectivity and merging the physical and digital technological dimensions have become a topic attracting the interest of the modern world. Internet of Things (IoT) is rapidly evolving as it manages to transform physical devices into communicating agents which can consecutively create complete interconnected systems. A sub-category of the IoT technology is smart toys, which are devices with networking capabilities, created for and used in play. Smart toys’ targeting group is usually children and they attempt to provide a higher level of entertainment and education by offering an enhanced and more interactive experience. Due to the nature and technical limitations of IoT devices, security experts have expressed concerns over the effectiveness and security level of smart devices. The importance of securing IoT devices has an increased weight when it pertains to smart toys, since sensitive information of children and teenagers can potentially be compromised. Furthermore, various security analyses on smart toys have discovered a worryingly high number of important security flaws. The master thesis focuses on the topic of smart toys’ security by first presenting and analyzing the necessary literature background. Furthermore, it presents a case study where a smart toy is selected and analyzed statically and dynamically utilizing a Raspberry Pi. The aim of this thesis is to examine and apply methods of analysis used in the relevant literature, in order to identify security flaws in the examined smart toy. The smart toy is a fitness band whose target consumers involve children and teenagers. The fitness band is communicating through Bluetooth with a mobile device and is accompanied by a mobile application. The mobile application has been installed and tested on an Android device. Finally, the analyses as well as their emerged results are presented and described in detail. Several security risks have been identified indicating that developers must increase their efforts in ensuring the optimal level of security in smart toys. Furthermore, several solutions that could minimize security risks and are related to our findings are suggested, along with potentially interesting topics for future work and further research
    corecore