2,273 research outputs found

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Spectrum sharing models in cognitive radio networks

    Get PDF
    Spectrum scarcity demands thinking new ways to manage the distribution of radio frequency bands so that its use is more effective. The emerging technology that can enable this paradigm shift is the cognitive radio. Different models for organizing and managing cognitive radios have emerged, all with specific strategic purposes. In this article we review the allocation spectrum patterns of cognitive radio networks and analyse which are the common basis of each model.We expose the vulnerabilities and open challenges that still threaten the adoption and exploitation of cognitive radios for open civil networks.L'escassetat de demandes d'espectre fan pensar en noves formes de gestionar la distribució de les bandes de freqüència de ràdio perquè el seu ús sigui més efectiu. La tecnologia emergent que pot permetre aquest canvi de paradigma és la ràdio cognitiva. Han sorgit diferents models d'organització i gestió de les ràdios cognitives, tots amb determinats fins estratègics. En aquest article es revisen els patrons d'assignació de l'espectre de les xarxes de ràdio cognitiva i s'analitzen quals són la base comuna de cada model. S'exposen les vulnerabilitats i els desafiaments oberts que segueixen amenaçant l'adopció i l'explotació de les ràdios cognitives per obrir les xarxes civils.La escasez de demandas de espectro hacen pensar en nuevas formas de gestionar la distribución de las bandas de frecuencia de radio para que su uso sea más efectivo. La tecnología emergente que puede permitir este cambio de paradigma es la radio cognitiva. Han surgido diferentes modelos de organización y gestión de las radios cognitivas, todos con determinados fines estratégicos. En este artículo se revisan los patrones de asignación del espectro de las redes de radio cognitiva y se analizan cuales son la base común de cada modelo. Se exponen las vulnerabilidades y los desafíos abiertos que siguen amenazando la adopción y la explotación de las radios cognitivas para abrir las redes civiles

    An Optimal Game Theoretical Framework for Mobility Aware Routing in Mobile Ad hoc Networks

    Full text link
    Selfish behaviors are common in self-organized Mobile Ad hoc Networks (MANETs) where nodes belong to different authorities. Since cooperation of nodes is essential for routing protocols, various methods have been proposed to stimulate cooperation among selfish nodes. In order to provide sufficient incentives, most of these methods pay nodes a premium over their actual costs of participation. However, they lead to considerably large overpayments. Moreover, existing methods ignore mobility of nodes, for simplicity. However, owing to the mobile nature of MANETs, this assumption seems unrealistic. In this paper, we propose an optimal game theoretical framework to ensure the proper cooperation in mobility aware routing for MANETs. The proposed method is based on the multi-dimensional optimal auctions which allows us to consider path durations, in addition to the route costs. Path duration is a metric that best reflects changes in topology caused by mobility of nodes and, it is widely used in mobility aware routing protocols. Furthermore, the proposed mechanism is optimal in that it minimizes the total expected payments. We provide theoretical analysis to support our claims. In addition, simulation results show significant improvements in terms of payments compared to the most popular existing methods

    Truthful Mechanisms for Secure Communication in Wireless Cooperative System

    Full text link
    To ensure security in data transmission is one of the most important issues for wireless relay networks, and physical layer security is an attractive alternative solution to address this issue. In this paper, we consider a cooperative network, consisting of one source node, one destination node, one eavesdropper node, and a number of relay nodes. Specifically, the source may select several relays to help forward the signal to the corresponding destination to achieve the best security performance. However, the relays may have the incentive not to report their true private channel information in order to get more chances to be selected and gain more payoff from the source. We propose a Vickey-Clark-Grove (VCG) based mechanism and an Arrow-d'Aspremont-Gerard-Varet (AGV) based mechanism into the investigated relay network to solve this cheating problem. In these two different mechanisms, we design different "transfer payment" functions to the payoff of each selected relay and prove that each relay gets its maximum (expected) payoff when it truthfully reveals its private channel information to the source. And then, an optimal secrecy rate of the network can be achieved. After discussing and comparing the VCG and AGV mechanisms, we prove that the AGV mechanism can achieve all of the basic qualifications (incentive compatibility, individual rationality and budget balance) for our system. Moreover, we discuss the optimal quantity of relays that the source node should select. Simulation results verify efficiency and fairness of the VCG and AGV mechanisms, and consolidate these conclusions.Comment: To appear in IEEE Transactions on Wireless Communication
    corecore