68 research outputs found

    Telemedicine

    Get PDF

    Telemedicine

    Get PDF

    Recording of time-varying back-pain data: A wireless solution

    Get PDF
    Chronic back pain is a debilitating experience for a considerable proportion of the adult population, with a significant impact on countries’ economies and health systems. While there has been increasing anecdotal evidence to support the fact that for certain categories of patients (such as wheelchair users), the back pain experienced is dynamically varying with time, there is a relative scarcity of data to support and document this observation, with consequential impact upon such patients’ treatment and care. Part of the reason behind this state of affairs is the relative difficulty in gathering pain measurements at precisely defined moments in time. In this paper,we describe a wireless-enabled solution that collects both questionnaire and diagrammatic, visual-based data, via a pain drawing, which overcomes such limitations, enabling seamless data collection and its upload to a hospital server using existing wireless fidelity technology. Results show that it is generally perceived to be an easy-to-use and convenient solution to the challenges of anywhere/anytime data collection

    MedLAN: Compact mobile computing system for wireless information access in emergency hospital wards

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.As the need for faster, safer and more efficient healthcare delivery increases, medical consultants seek new ways of implementing a high quality telemedical system, using innovative technology. Until today, teleconsultation (the most common application of Telemedicine) was performed by transferring the patient from the Accidents and Emergency ward, to a specially equipped room, or by moving large and heavy machinery to the place where the patient resided. Both these solutions were unpractical, uneconomical and potentially dangerous. At the same time wireless networks became increasingly useful in point-of-care areas such as hospitals, because of their ease of use, low cost of installation and increased flexibility. This thesis presents an integrated system called MedLAN dedicated for use inside the A&E hospital wards. Its purpose is to wirelessly support high-quality live video, audio, high-resolution still images and networks support from anywhere there is WLAN coverage. It is capable of transmitting all of the above to a consultant residing either inside or outside the hospital, or even to an external place, thorough the use of the Internet. To implement that, it makes use of the existing IEEE 802.11b wireless technology. Initially, this thesis demonstrates that for specific scenarios (such as when using WLANs), DICOM specifications should be adjusted to accommodate for the reduced WLAN bandwidth. Near lossless compression has been used to send still images through the WLANs and the results have been evaluated by a number of consultants to decide whether they retain their diagnostic value. The thesis further suggests improvements on the existing 802.11b protocol. In particular, as the typical hospital environment suffers from heavy RF reflections, it suggests that an alternative method of modulation (OFDM) can be embedded in the 802.11b hardware to reduce the multipath effect, increase the throughput and thus the video quality sent by the MedLAN system. Finally, realising that the trust between a patient and a doctor is fundamental this thesis proposes a series of simple actions aiming at securing the MedLAN system. Additionally, a concrete security system is suggested, that encapsulates the existing WEP security protocol, over IPSec

    MedLAN : compact mobile computing system for wireless information access in emergency hospital wards

    Get PDF
    As the need for faster, safer and more efficient healthcare delivery increases, medical consultants seek new ways of implementing a high quality telemedical system, using innovative technology. Until today, teleconsultation (the most common application of Telemedicine) was performed by transferring the patient from the Accidents and Emergency ward, to a specially equipped room, or by moving large and heavy machinery to the place where the patient resided. Both these solutions were unpractical, uneconomical and potentially dangerous. At the same time wireless networks became increasingly useful in point-of-care areas such as hospitals, because of their ease of use, low cost of installation and increased flexibility. This thesis presents an integrated system called MedLAN dedicated for use inside the A;E hospital wards. Its purpose is to wirelessly support high-quality live video, audio, high-resolution still images and networks support from anywhere there is WLAN coverage. It is capable of transmitting all of the above to a consultant residing either inside or outside the hospital, or even to an external place, thorough the use of the Internet. To implement that, it makes use of the existing IEEE 802.11b wireless technology. Initially, this thesis demonstrates that for specific scenarios (such as when using WLANs), DICOM specifications should be adjusted to accommodate for the reduced WLAN bandwidth. Near lossless compression has been used to send still images through the WLANs and the results have been evaluated by a number of consultants to decide whether they retain their diagnostic value. The thesis further suggests improvements on the existing 802.11b protocol. In particular, as the typical hospital environment suffers from heavy RF reflections, it suggests that an alternative method of modulation (OFDM) can be embedded in the 802.11b hardware to reduce the multipath effect, increase the throughput and thus the video quality sent by the MedLAN system. Finally, realising that the trust between a patient and a doctor is fundamental this thesis proposes a series of simple actions aiming at securing the MedLAN system. Additionally, a concrete security system is suggested, that encapsulates the existing WEP security protocol, over IPSec.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Adviser\u27s guide to health care: Volume 1, An Era of Reform

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1800/thumbnail.jp

    Adviser\u27s Guide to Health Care, Volume 1: An Era of Reform—The Four Pillars

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/2720/thumbnail.jp

    Bringing Health Care Online: The Role of Information Technologies

    Get PDF
    This report identifies key technologies and shows how they are being used to communicate clinical information, simplify administration of health care delivery, assess the quality of health care, inform the decision-making of providers and administrators, and support delivery of health care at a distance

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios
    corecore