2,109 research outputs found

    Sensor enclosures: example application and implications for data coherence

    Get PDF
    Sensors deployed in natural environments, such as rivers, beaches and glaciers, experience large forces and damaging environmental conditions. Sensors need to be robust, securely operate for extended time periods and be readily relocated and serviced. The sensors must be housed in materials that mimic natural conditions of size, density, shape and roughness. We have developed an encasement system for sensors required to measure large forces experienced by mobile river sediment grains. Sensors are housed within two discrete cases that are rigidly conjoined. The inner case exactly fits the sensor, radio components and power source. This case can be mounted within outer cases of any larger size and can be precisely moulded to match the shapes of natural sediment. Total grain mass can be controlled by packing the outer case with dense material. Case design uses Solid-WorksTM software, and shape-matching involved 3D laser scanning of natural pebbles. The cases were printed using a HP DesignjetTM 3D printer that generates high precision parts that lock rigidly in place. The casings are watertight and robust. Laboratory testing produces accurate results over a wider range of accelerations than previously reported

    Cooperative Authentication in Underwater Acoustic Sensor Networks

    Full text link
    With the growing use of underwater acoustic communications (UWAC) for both industrial and military operations, there is a need to ensure communication security. A particular challenge is represented by underwater acoustic networks (UWANs), which are often left unattended over long periods of time. Currently, due to physical and performance limitations, UWAC packets rarely include encryption, leaving the UWAN exposed to external attacks faking legitimate messages. In this paper, we propose a new algorithm for message authentication in a UWAN setting. We begin by observing that, due to the strong spatial dependency of the underwater acoustic channel, an attacker can attempt to mimic the channel associated with the legitimate transmitter only for a small set of receivers, typically just for a single one. Taking this into account, our scheme relies on trusted nodes that independently help a sink node in the authentication process. For each incoming packet, the sink fuses beliefs evaluated by the trusted nodes to reach an authentication decision. These beliefs are based on estimated statistical channel parameters, chosen to be the most sensitive to the transmitter-receiver displacement. Our simulation results show accurate identification of an attacker's packet. We also report results from a sea experiment demonstrating the effectiveness of our approach.Comment: Author version of paper accepted for publication in the IEEE Transactions on Wireless Communication

    A Survey of Routing Issues and Associated Protocols in Underwater Wireless Sensor Networks

    Get PDF
    Underwater Wireless Sensor Network is newly emerging wireless technology in which small size sensors with limited energy, limited memory and bandwidth are deployed in deep sea water and various monitoring operation like tactical surveillance, environmental monitoring and data collection are performed through these tiny sensor. Underwater Wireless Sensor Network is used for exploration of underwater resources, oceanographic data collection, flood or disaster prevention, tactical surveillance system and unmanned underwater vehicles. Sensor node consist of small memory, central processing unit and antenna. Underwater network is much different from terrestrial sensor network as radio waves cannot be used in Underwater Wireless Sensor Network. Acoustic channels are used for communication in deep sea water. Acoustic Signals carries with itself many limitation. Such as Limited bandwidth, higher end to end delay, network path loss, higher propagation delay and dynamic topology. Usually these limitation results in higher energy consumption with less number of packets delivered. The main aim now a days is to operate sensor node having smaller battery for a longer time in network. This survey has discussed the state of the art Localization based and Localization free routing protocols. Routing associated issues in the area of Underwater Wireless Sensor Network has also been discussed
    • …
    corecore