163 research outputs found

    Secure the image-based simulated telesurgery system

    Get PDF

    Study of video quality assessment for telesurgery

    Get PDF
    elemedicine provides a transformative practice for access to and delivery of timely and high quality healthcare in resource-poor settings. In a typical scenario of telesurgery, surgical tasks are performed with one surgeon situated at the patient’s side and one expert surgeon from a remote site. In order to make telesurgery practice realistic and secure, reliable transmission of medical videos over large distances is essential. However, telesurgery videos that are communicated remotely in real time are vulnerable to distortions in signals due to data compression and transmission. Depending on the system and its applications, visual content received by the surgeons differs in perceived quality, which may incur implications for the performance of telesurgery tasks. To rigorously study the assessment of the quality of telesurgery videos, we performed both qualitative and quantitative research, consisting of semi-structured interviews and video quality scoring with human subjects. Statistical analyses are conducted and results show that compression artifacts and transmission errors significantly affect the perceived quality; and the effects tend to depend on the specific surgical procedure, visual content, frame rate, and the degree of distortion. The findings of the study are readily applicable to improving telesurgery systems

    Towards fostering the role of 5G networks in the field of digital health

    Get PDF
    A typical healthcare system needs further participation with patient monitoring, vital signs sensors and other medical devices. Healthcare moved from a traditional central hospital to scattered patients. Healthcare systems receive help from emerging technology innovations such as fifth generation (5G) communication infrastructure: internet of things (IoT), machine learning (ML), and artificial intelligence (AI). Healthcare providers benefit from IoT capabilities to comfort patients by using smart appliances that improve the healthcare level they receive. These IoT smart healthcare gadgets produce massive data volume. It is crucial to use very high-speed communication networks such as 5G wireless technology with the increased communication bandwidth, data transmission efficiency and reduced communication delay and latency, thus leading to strengthen the precise requirements of healthcare big data utilities. The adaptation of 5G in smart healthcare networks allows increasing number of IoT devices that supplies an augmentation in network performance. This paper reviewed distinctive aspects of internet of medical things (IoMT) and 5G architectures with their future and present sides, which can lead to improve healthcare of patients in the near future

    ROBOTIC TELESURGERY: AN INVESTIGATION OF UTILITY, HUMAN ADAPTATION, AND PERFORMANCE

    Get PDF
    Robotic surgery is a powerful, new method for performing minimally invasive surgery (MIS). The method allows complex procedures through incisions which are 10 mm or less. Robotic surgery has grown rapidly because small MIS incisions result in rapid patient recovery compared to conventional methods. Although surgical robots have the potential of long distance control, insufficient data is available to determine whether long distance robotic surgery, or telesurgery, is practical. Telesurgery could provide multiple benefits, including dissemination of expertise, widespread patient care, cost savings, and improved community care. We describe a series of experiments to investigate telesurgery using a one of a kind telesurgery platform and ground- and satellite-based Internet networks. The networks provided the redundancy and quality of service that would be required for human surgery. Tolerances for performing surgical tasks over a long distance were unknown. We show that operators using the platform can complete dry lab manoeuvres with communication latencies up to 500 ms, with no appreciable increase in error rates. Such latency would be equivalent to a North American transcontinental distance, implying a wide range of telesurgical capability. The characteristics of ground- and satellite-based Internet networks for telesurgery were unavailable. We demonstrate that emulated surgery in animals can be effectively performed using either ground or satellite. The networks can reliably support surgery, and satellite-based surgery can be performed even though latency exceeds 500 ms. Further, satellite bandwidth should be above 5 Mb/s for telesurgery applications. Satellite networks could be used either for back up or primarily where a community does not have ground-based equipment. iii Methods of training operators for telesurgery had not been explored. We demonstrate two methods of training for telesurgery. Operators doing dry lab surgical manoeuvres performed equally well either with sequentially increasing latency or with full latency only, suggesting that both methods of training may be effective. Telesurgery can become a practical method of treatment. Within a few years, more widespread platforms and telecommunications may exist to launch everyday telesurgery procedures

    Network Latency in Teleoperation of Connected and Autonomous Vehicles:A Review of Trends, Challenges, and Mitigation Strategies

    Get PDF
    With remarkable advancements in the development of connected and autonomous vehicles (CAVs), the integration of teleoperation has become crucial for improving safety and operational efficiency. However, teleoperation faces substantial challenges, with network latency being a critical factor influencing its performance. This survey paper explores the impact of network latency along with state-of-the-art mitigation/compensation approaches. It examines cascading effects on teleoperation communication links (i.e., uplink and downlink) and how delays in data transmission affect the real-time perception and decision-making of operators. By elucidating the challenges and available mitigation strategies, the paper offers valuable insights for researchers, engineers, and practitioners working towards the seamless integration of teleoperation in the evolving landscape of CAVs

    Cyber Physical System Based Smart Healthcare System with Federated Deep Learning Architectures with Data Analytics

    Get PDF
    Data shared between hospitals and patients using mobile and wearable Internet of Medical Things (IoMT) devices raises privacy concerns due to the methods used in training. the development of the Internet of Medical Things (IoMT) and related technologies and the most current advances in these areas The Internet of Medical Things and other recent technological advancements have transformed the traditional healthcare system into a smart one. improvement in computing power and the spread of information have transformed the healthcare system into a high-tech, data-driven operation. On the other hand, mobile and wearable IoMT devices present privacy concerns regarding the data transmitted between hospitals and end users because of the way in which artificial intelligence is trained (AI-centralized). In terms of machine learning (AI-centralized). Devices connected to the IoMT network transmit highly confidential information that could be intercepted by adversaries. Due to the portability of electronic health record data for clinical research made possible by medical cyber-physical systems, the rate at which new scientific discoveries can be made has increased. While AI helps improve medical informatics, the current methods of centralised data training and insecure data storage management risk exposing private medical information to unapproved foreign organisations. New avenues for protecting users' privacy in IoMT without requiring access to their data have been opened by the federated learning (FL) distributive AI paradigm. FL safeguards user privacy by concealing all but gradients during training. DeepFed is a novel Federated Deep Learning approach presented in this research for the purpose of detecting cyber threats to intelligent healthcare CPSs

    Application and Prospect of Telesurgery: The Role of Artificial Intelligence

    Get PDF
    Remote surgery refers to a new surgical mode in which doctors operate on patients with the help of surgical robots, network technology, and virtual reality technology. These robots are located far away from patients. The remote surgical robot system integrates key technologies such as robot, communication technology, remote control technology, space mapping algorithm, and fault tolerance analysis. Apply a variety of emerging networking modes such as 5G, optical fiber private network, fusion network technology, and deterministic network to realize the motion of the subordinate surgical robot and the vision of the main knife, and ensure stable signal transmission and safe remote operation. The development and application of remote surgical robots has become a new trend, which helps to break the barriers of unbalanced regional medical resource allocation, promote the rational allocation of high-quality medical resources, and solve the telemedicine problems in special areas and special circumstances. The development prospect is broad. In the future, relying on the 5G network technology with high speed, low power consumption, and low latency, remote surgery can operate more efficiently and stably, and the surgical robot will also develop toward a more portable and flexible direction, so as to better serve patients

    Remote Access and Computerized User Control of Robotic Micromanipulators

    Get PDF
    Nano- and micromanipulators are critical research tools in numerous fields including micro-manufacturing and disease study. Despite their importance, nano- and micromanipulation systems remain inaccessible to many groups due to price and lack of portability. An intuitive and remotely accessible manipulation system helps mitigate this access problem. Previously, optimal control hardware for single-probe manipulation and the effect of latency on user performance were not well understood. Remote access demands full computerization; graphical user interfaces with networking capabilities were developed to fulfill this requirement and allow the use of numerous hardware controllers. Virtual environments were created to simulate the use of a manipulator with full parametric control and measurement capabilities. Users completed simulated tasks with each device and were surveyed about their perceptions. User performance with a commercial manipulator controller was exceeded by performance with both a computer mouse and pen tablet. Latency was imposed within the virtual environment to study it’s effects and establish guidelines as to which latency ranges are acceptable for long-range remote manipulation. User performance began to degrade noticeably at 100 ms and severely at 400 ms and performance with the mouse degraded the least as latency increased. A computer vision system for analyzing carbon nanotube arrays was developed so the computation time could be compared to acceptable system latency. The system characterizes the arrays to a high degree of accuracy and most of the measurement types of obtainable fast enough for real-time analysis

    A Method of Decreasing Time Delay for A Tele-surgery System

    Get PDF
    Abstract -The haptics-based master-slave system for Minimally Invasive Surgery is a promising way to protect surgeons from long time radiation and to train novice doctors to learn basic wire or catheter handling skills. However, the time delay of transmission of visual video and the time difference between image information and force signals restrict the application of this technology in some extent. In this paper, we proposed a new method to reduce time delay effectively. At the slave side, the tip of the active catheter is tracked in real time to provide information on the location of the catheter in the blood vessel model. And then transmitted the coordinate values to the master site. At the master site, the location of the catheter was reappeared in the navigation chart which is the same structure with the blood vessels at master side according to the coordinate values received from the slave side. Therefore the transmission time of image information is decreased. Experimental results are given to illustrate the accuracy of our method
    • …
    corecore