4 research outputs found

    Cloud animation

    Get PDF
    Clouds are animate forms, shifting and evanescent, mutable and always in movement. They have also long been a subject of imagery, especially painting, because paint, most notably watercolour, as John Constable knew, seeped into thick drawing papers much as a cloud seeped itself through the sky. The drama of clouds in the 20th century was seized by film and it is striking to note that many Hollywood Studio logos use clouds. Clouds from Constable to the Hollywood logos are Romantic clouds. They drift and float, produce ambience and mood, along with weather. But the cloud appears in the digital age too, in more ways than one. Clouds have been constituted digitally by commercial animation studios and used as main characters in cartoons; they are available in commercial applications, such as architecture and landscaping packages; they have been made and represented by art animators. This body of work, kitsch and dumb as some of it is, is treated in this article as emblematic of an age in which the digital cloud looms as a new substance. The cloud in the digital age is a source of form, like a 3D printer, a source of any imaginable form. As such it comes to be less a metaphor of something else and more a generator of a metaphor that is itself. Now we live alongside – and even inside - a huge cloud metaphor that is The Cloud. In what ways do the clouds in the sky speak across to the platform and matter that is called The Cloud? What is at work in the digitalising of clouds in animation, and the production of animation through the technologies of the Cloud? Are we witnessing the creation of a synthetic heaven into which all production has been relocated and the digital clouds make all the moves? Keywords Cloud, day-dreaming, dust, digital, metaphor, Romanticis

    Mobile Network and Cloud Based Privacy-Preserving Data Aggregation and Processing

    Get PDF
    The emerging technology of mobile devices and cloud computing has brought a new and efficient way for data to be collected, processed and stored by mobile users. With improved specifications of mobile devices and various mobile applications provided by cloud servers, mobile users can enjoy tremendous advantages to manage their daily life through those applications instantaneously, conveniently and productively. However, using such applications may lead to the exposure of user data to unauthorised access when the data is outsourced for processing and storing purposes. Furthermore, such a setting raises the privacy breach and security issue to mobile users. As a result, mobile users would be reluctant to accept those applications without any guarantee on the safety of their data. The recent breakthrough of Fully Homomorphic Encryption (FHE) has brought a new solution for data processing in a secure motion. Several variants and improvements on the existing methods have been developed due to efficiency problems. Experience of such problems has led us to explore two areas of studies, Mobile Sensing Systems (MSS) and Mobile Cloud Computing (MCC). In MSS, the functionality of smartphones has been extended to sense and aggregate surrounding data for processing by an Aggregation Server (AS) that may be operated by a Cloud Service Provider (CSP). On the other hand, MCC allows resource-constraint devices like smartphones to fully leverage services provided by powerful and massive servers of CSPs for data processing. To support the above two application scenarios, this thesis proposes two novel schemes: an Accountable Privacy-preserving Data Aggregation (APDA) scheme and a Lightweight Homomorphic Encryption (LHE) scheme. MSS is a kind of WSNs, which implements a data aggregation approach for saving the battery lifetime of mobile devices. Furthermore, such an approach could improve the security of the outsourced data by mixing the data prior to be transmitted to an AS, so as to prevent the collusion between mobile users and the AS (or its CSP). The exposure of users’ data to other mobile users leads to a privacy breach and existing methods on preserving users’ privacy only provide an integrity check on the aggregated data without being able to identify any misbehaved nodes once the integrity check has failed. Thus, to overcome such problems, our first scheme APDA is proposed to efficiently preserve privacy and support accountability of mobile users during the data aggregation. Furthermore, APDA is designed with three versions to provide balanced solutions in terms of misbehaved node detection and data aggregation efficiency for different application scenarios. In addition, the successfully aggregated data also needs to be accompanied by some summary information based on necessary additive and non-additive functions. To preserve the privacy of mobile users, such summary could be executed by implementing existing privacy-preserving data aggregation techniques. Nevertheless, those techniques have limitations in terms of applicability, efficiency and functionality. Thus, our APDA has been extended to allow maximal value finding to be computed on the ciphertext data so as to preserve user privacy with good efficiency. Furthermore, such a solution could also be developed for other comparative operations like Average, Percentile and Histogram. Three versions of Maximal value finding (Max) are introduced and analysed in order to differentiate their efficiency and capability to determine the maximum value in a privacy-preserving manner. Moreover, the formal security proof and extensive performance evaluation of our proposed schemes demonstrate that APDA and its extended version can achieve stronger security with an optimised efficiency advantage over the state-of-the-art in terms of both computational and communication overheads. In the MCC environment, the new LHE scheme is proposed with a significant difference so as to allow arbitrary functions to be executed on ciphertext data. Such a scheme will enable rich-mobile applications provided by CSPs to be leveraged by resource-constraint devices in a privacy-preserving manner. The scheme works well as long as noise (a random number attached to the plaintext for security reasons) is less than the encryption key, which makes it flexible. The flexibility of the key size enables the scheme to incorporate with any computation functions in order to produce an accurate result. In addition, this scheme encrypts integers rather than individual bits so as to improve the scheme’s efficiency. With a proposed process that allows three or more parties to communicate securely, this scheme is suited to the MCC environment due to its lightweight property and strong security. Furthermore, the efficacy and efficiency of this scheme are thoroughly evaluated and compared with other schemes. The result shows that this scheme can achieve stronger security under a reasonable cost

    High-fidelity graphics using unconventional distributed rendering approaches

    Get PDF
    High-fidelity rendering requires a substantial amount of computational resources to accurately simulate lighting in virtual environments. While desktop computing, with the aid of modern graphics hardware, has shown promise in delivering realistic rendering at interactive rates, real-time rendering of moderately complex scenes is still unachievable on the majority of desktop machines and the vast plethora of mobile computing devices that have recently become commonplace. This work provides a wide range of computing devices with high-fidelity rendering capabilities via oft-unused distributed computing paradigms. It speeds up the rendering process on formerly capable devices and provides full functionality to incapable devices. Novel scheduling and rendering algorithms have been designed to best take advantage of the characteristics of these systems and demonstrate the efficacy of such distributed methods. The first is a novel system that provides multiple clients with parallel resources for rendering a single task, and adapts in real-time to the number of concurrent requests. The second is a distributed algorithm for the remote asynchronous computation of the indirect diffuse component, which is merged with locally-computed direct lighting for a full global illumination solution. The third is a method for precomputing indirect lighting information for dynamically-generated multi-user environments by using the aggregated resources of the clients themselves. The fourth is a novel peer-to-peer system for improving the rendering performance in multi-user environments through the sharing of computation results, propagated via a mechanism based on epidemiology. The results demonstrate that the boundaries of the distributed computing typically used for computer graphics can be significantly and successfully expanded by adapting alternative distributed methods
    corecore