6 research outputs found

    Hide The Modulus: A Secure Non-Interactive Fully Verifiable Delegation Scheme for Modular Exponentiations via CRT

    Get PDF
    Security protocols using public-key cryptography often requires large number of costly modular exponentiations (MEs). With the proliferation of resource-constrained (mobile) devices and advancements in cloud computing, delegation of such expensive computations to powerful server providers has gained lots of attention. In this paper, we address the problem of verifiably secure delegation of MEs using two servers, where at most one of which is assumed to be malicious (the OMTUP-model). We first show verifiability issues of two recent schemes: We show that a scheme from IndoCrypt 2016 does not offer full verifiability, and that a scheme for nn simultaneous MEs from AsiaCCS 2016 is verifiable only with a probability 0.59090.5909 instead of the author\u27s claim with a probability 0.99550.9955 for n=10n=10. Then, we propose the first non-interactive fully verifiable secure delegation scheme by hiding the modulus via Chinese Remainder Theorem (CRT). Our scheme improves also the computational efficiency of the previous schemes considerably. Hence, we provide a lightweight delegation enabling weak clients to securely and verifiably delegate MEs without any expensive local computation (neither online nor offline). The proposed scheme is highly useful for devices having (a) only ultra-lightweight memory, and (b) limited computational power (e.g. sensor nodes, RFID tags)

    Fully Verifiable Secure Delegation of Pairing Computation: Cryptanalysis and An Efficient Construction

    Get PDF
    We address the problem of secure and verifiable delegation of general pairing computation. We first analyze some recently proposed pairing delegation schemes and present several attacks on their security and/or verifiability properties. In particular, we show that none of these achieve the claimed security and verifiability properties simultaneously. We then provide a fully verifiable secure delegation scheme VerPair{\sf VerPair} under one-malicious version of a two-untrusted-program model (OMTUP). VerPair{\sf VerPair} not only significantly improves the efficiency of all the previous schemes, such as fully verifiable schemes of Chevallier-Mames et al. and Canard et al. by eliminating the impractical exponentiation- and scalar-multiplication-consuming steps, but also offers for the first time the desired full verifiability property unlike other practical schemes. Furthermore, we give a more efficient and less memory consuming invocation of the subroutine Rand{\sf Rand} for VerPair{\sf VerPair} by eliminating the requirement of offline computations of modular exponentiations and scalar-multiplications. In particular, Rand{\sf Rand} includes a fully verifiable partial delegation under the OMTUP assumption. The partial delegation of Rand{\sf Rand} distinguishes VerPair{\sf VerPair} as a useful lightweight delegation scheme when the delegator is resource-constrained (e.g. RFID tags, smart cards or sensor nodes)

    Secure Delegation of Isogeny Computations and Cryptographic Applications

    Get PDF
    We address the problem of speeding up isogeny computation for supersingular elliptic curves over finite fields using untrusted computational resources like third party servers or cloud service providers (CSPs). We first propose new, efficient and secure delegation schemes. This especially enables resource-constrained devices (e.g. smart cards, RFID tags, tiny sensor nodes) to effectively deploy post-quantum isogeny-based cryptographic protocols. To the best of our knowledge, these new schemes are the first attempt to generalize the classical secure delegation schemes for group exponentiations and pairing computation to an isogeny-based post-quantum setting. Then, we apply these secure delegation subroutines to improve the performance of supersingular isogeny-based zero-knowledge proofs of identity. Our experimental results show that, at the 128−bit quantum-security level, the proving party only needs about 3% of the original protocol cost, while the verifying party’s effort is fully reduced to comparison operations. Lastly, we also apply our delegation schemes to decrease the computational cost of the decryption step for the NIST postquantum standardization candidate SIKE

    Data Service Outsourcing and Privacy Protection in Mobile Internet

    Get PDF
    Mobile Internet data have the characteristics of large scale, variety of patterns, and complex association. On the one hand, it needs efficient data processing model to provide support for data services, and on the other hand, it needs certain computing resources to provide data security services. Due to the limited resources of mobile terminals, it is impossible to complete large-scale data computation and storage. However, outsourcing to third parties may cause some risks in user privacy protection. This monography focuses on key technologies of data service outsourcing and privacy protection, including the existing methods of data analysis and processing, the fine-grained data access control through effective user privacy protection mechanism, and the data sharing in the mobile Internet

    Privacy-preserving composite modular exponentiation outsourcing with optimal checkability in single untrusted cloud server

    Full text link
    © 2018 Elsevier Ltd Outsourcing computing allows users with resource-constrained devices to outsource their complex computation workloads to cloud servers, which is more economical for cloud customers. However, since users lose direct control of the computation task, possible threats need to be addressed, such as data privacy and the correctness of results. Modular exponentiation is one of the most basic and time-consuming operations but widely applied in the field of cryptography. In this paper, we propose two new and efficient algorithms for secure outsourcing of single and multiple composite modular exponentiations. Unlike the algorithms based on two untrusted servers, we outsource modular exponentiation operation to only a single server, eliminating the possible collusion attack with two servers. Moreover, we put forward a new mathematical division method, which hides the base and exponent of the outsourced data, without exposing sensitive information to the cloud server. In addition, compared with other state-of-the-art algorithms, our scheme shows a remarkable improvement in checkability, enabling the user to detect any misbehavior with the optimal probability close to 1. Finally, we use our proposed algorithms as a subroutine to realize Shamir's Identity-Based Signature Scheme and Identity-Based Multi-Signatures Scheme

    Secure outsourcing algorithms of modular exponentiations with optimal checkability based on a single untrusted cloud server

    No full text
    2018, Springer Science+Business Media, LLC, part of Springer Nature. Modular exponentiation is an expensive discrete-logarithm operation, difficult for resource-constrained users to perform locally. Fortunately, thanks to burgeoning cloud computing, users are willing to securely outsourcing modular exponentiations to cloud servers to reduce computation overhead. In this paper, we contrive a fully verifiable secure outsourcing scheme for modular exponentiation with only a single server, named MExp. MExp not only prevents users\u27 private information leakage during outsourcing by our new logical division method, but also eliminates collusion attacks occurring in algorithms with two untrusted servers. Moreover, our MExp allows outsourcers to detect any misbehavior with a probability of 1, which shows significant improvement in checkability when compare to other single-server-based schemes. With a view to reducing computation overhead, MExp is extended to multiple modular exponentiations, named M2Exp. The algorithm significantly diminishes the local costs of multiple modular exponentiation calculations and the checkability is still 1. Compared with existing state-of-the-art schemes, MExp and M2Exp have outstanding performance in both efficiency and checkability. Finally, MExp and M2Exp are applied to Cramer-Shoup encryptions and Schnorr signatures
    corecore