3 research outputs found

    The CEO Problem with Secrecy Constraints

    Full text link
    We study a lossy source coding problem with secrecy constraints in which a remote information source should be transmitted to a single destination via multiple agents in the presence of a passive eavesdropper. The agents observe noisy versions of the source and independently encode and transmit their observations to the destination via noiseless rate-limited links. The destination should estimate the remote source based on the information received from the agents within a certain mean distortion threshold. The eavesdropper, with access to side information correlated to the source, is able to listen in on one of the links from the agents to the destination in order to obtain as much information as possible about the source. This problem can be viewed as the so-called CEO problem with additional secrecy constraints. We establish inner and outer bounds on the rate-distortion-equivocation region of this problem. We also obtain the region in special cases where the bounds are tight. Furthermore, we study the quadratic Gaussian case and provide the optimal rate-distortion-equivocation region when the eavesdropper has no side information and an achievable region for a more general setup with side information at the eavesdropper.Comment: Accepted for publication in IEEE Transactions on Information Forensics and Security, 17 pages, 4 figure

    Distributed secrecy for information theoretic sensor network models

    Get PDF
    This dissertation presents a novel problem inspired by the characteristics of sensor networks. The basic setup through-out the dissertation is that a set of sensor nodes encipher their data without collaboration and without any prior shared secret materials. The challenge is dealt by an eavesdropper who intercepts a subset of the enciphered data and wishes to gain knowledge of the uncoded data. This problem is challenging and novel given that the eavesdropper is assumed to know everything, including secret cryptographic keys used by both the encoders and decoders. We study the above problem using information theoretic models as a necessary first step towards an understanding of the characteristics of this system problem. This dissertation contains four parts. The first part deals with noiseless channels, and the goal is for sensor nodes to both source code and encipher their data. We derive inner and outer regions of the capacity region (i.e the set of all source coding and equivocation rates) for this problem under general distortion constraints. The main conclusion in this part is that unconditional secrecy is unachievable unless the distortion is maximal, rendering the data useless. In the second part we thus provide a practical coding scheme based on distributed source coding using syndromes (DISCUS) that provides secrecy beyond the equivocation measure, i.e. secrecy on each symbol in the message. The third part deals with discrete memoryless channels, and the goal is for sensor nodes to both channel code and encipher their data. We derive inner and outer regions to the secrecy capacity region, i.e. the set of all channel coding rates that achieve (weak) unconditional secrecy. The main conclusion in this part is that interference allows (weak) unconditional secrecy to be achieved in contrast with the first part of this dissertation. The fourth part deals with wireless channels with fading and additive Gaussian noise. We derive a general outer region and an inner region based on an equal SNR assumption, and show that the two are partially tight when the maximum available user powers are admissible
    corecore