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ABSTRACT

Distributed Secrecy for Information Theoretic Sensor Network Models.

(August 2008)

William Luh, B.A.Sc., University of Toronto;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Deepa Kundur

This dissertation presents a novel problem inspired by the characteristics of

sensor networks. The basic setup through-out the dissertation is that a set of sensor

nodes encipher their data without collaboration and without any prior shared secret

materials. The challenge is dealt by an eavesdropper who intercepts a subset of the

enciphered data and wishes to gain knowledge of the uncoded data. This problem

is challenging and novel given that the eavesdropper is assumed to know everything,

including secret cryptographic keys used by both the encoders and decoders. We

study the above problem using information theoretic models as a necessary first step

towards an understanding of the characteristics of this system problem.

This dissertation contains four parts. The first part deals with noiseless chan-

nels, and the goal is for sensor nodes to both source code and encipher their data. We

derive inner and outer regions of the capacity region (i.e the set of all source coding

and equivocation rates) for this problem under general distortion constraints. The

main conclusion in this part is that unconditional secrecy is unachievable unless the

distortion is maximal, rendering the data useless. In the second part we thus provide

a practical coding scheme based on distributed source coding using syndromes (DIS-

CUS) that provides secrecy beyond the equivocation measure, i.e. secrecy on each

symbol in the message. The third part deals with discrete memoryless channels, and
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the goal is for sensor nodes to both channel code and encipher their data. We derive

inner and outer regions to the secrecy capacity region, i.e. the set of all channel coding

rates that achieve (weak) unconditional secrecy. The main conclusion in this part is

that interference allows (weak) unconditional secrecy to be achieved in contrast with

the first part of this dissertation. The fourth part deals with wireless channels with

fading and additive Gaussian noise. We derive a general outer region and an inner

region based on an equal SNR assumption, and show that the two are partially tight

when the maximum available user powers are admissible.
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CHAPTER I

INTRODUCTION

A. Sensor Networks and Security

Cryptography is a well-studied field that has evolved significantly from its World War

II renaissance to address more modern goals and challenges. Particularly since the

advent of computer networks and the digital and mobile age, the goal of cryptog-

raphy has been diversified from providing the critical confidentiality service, to the

additional study of key exchange and management, authentication and digital signa-

tures, secret sharing, protocols and algorithms for E-commerce and E-voting, (casino)

games over the Internet, quantum cryptography, and many more.1 As new needs con-

tinue to arise and to be identified, existing cryptographic schemes must be evaluated

to determine whether or not they are appropriate in the new setting, whether they

can be modified for the new scenario, or whether a new shift in paradigm is required.

The recent introduction and study of sensor networks illustrates this important

point. Sensor networks are generally envisioned as low-cost, low-complexity net-

works where the ubiquity and density of deployed nodes compensates for their lack

of computational power and battery life [1]. Due to the limited and sometimes un-

predictable lifetimes of many of the nodes, traditional cryptographic services such as

key exchange and key management may not provide a sufficiently light-weight and

efficient solution for these networks [2]. The difficulty of designing and implementing

suitable key exchange and management protocols for sensor networks only becomes

The journal model is IEEE Transactions on Automatic Control.

1In the recent IEEE International Conference on Communications, 57 different se-
curity topics were listed under the Computer and Communications Network Security
symposium.
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more apparent when one considers the random initial deployment of the nodes as well

as the topology changes which occur in such networks due to mobility, node depletion

and the addition of new nodes. When such variability in topology exists, the task of

re-establishing keys with neighboring nodes may become prohibitive in terms of the

percentage of time and energy spent on node management [3]. It is thus desirable to

develop light-weight methodologies that exploit the inherent characteristics of sensor

nodes, such as any redundancies that result from the physical proximity of nodes

to their neighbors. Ideally however, any new proposed methodology should also be

compatible with the existing key exchange and management protocols.

As a further consideration for sensor network design, nodes are often assumed

to operate unattended in possibly harsh and hostile environments [4]. Such extreme

scenarios often result in low bandwidth communications due to interference noise or

intentional jamming. Thus it is of utmost importance that sensor nodes perform

their duties with as little need for explicit communication as possible, since such

communication consumes valuable power and bandwidth resources [3]. At the same

time, nodes within close proximity of one another (i.e. a cluster of nodes) may sample

correlated readings from their environment. This suggests that collaboration among

these nodes would be beneficial towards the accomplishment of their shared goal of

sensing and data reporting. This apparent conflict between the need to collaborate

and the need to minimize inter-cluster communication is one of the central themes in

the first half of our research. Thus in a similar flavor to the field of distributed source

coding (where the goal is compression instead of confidentiality), we will explore

the possibility of providing confidentiality to all the nodes within a cluster without

the need to explicitly communicate and without the use of costly key exchange and

management services.

In lieu of using cryptographic keys to provide confidentiality in a communications
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network, an alternative paradigm based on exploiting the ambient environmental and

communications noise to conceal the secret forms the central theme in the second

half of our research. This paradigm allows us to model distributed secrecy in a sensor

network such that the system exhibits the desirable properties outlined above, i.e. a

keyless and inter-communicationless sensor network.

B. Contributions

As will be detailed, most of our contributions are information theoretic in nature.

Thus the sensor network characteristics summarized above inspire the abstract models

that this dissertation analyzes. The ultimate goal is thus to provide a solid foundation

towards addressing these issues in a more practical light. For example we study the

tradeoffs between the fundamental parameters of secrecy, compression, and channel

coding redundancy, with the overall aim of providing guidance for future design and

implementations of practical codes for sensor networks and with possible significance

for other distributed networks. To achieve this goal, this dissertation consists of four

main parts. We first study the tradeoffs between secrecy and compression with the

assumption of noiseless channels. The second part of our research is the derivation of

practical coding schemes for the first problem. Next we study the above problem un-

der the assumption of discrete memoryless interference channels (DMIC), and derive

tradeoffs between secrecy and the channel coding rates. The last part of our research

extends the DMIC to the wireless setting (fading channels and Gaussian noise), thus

making the results more applicable to practical wireless networks.

We now provide a more detailed outline of our contributions. For the first part of

our dissertation we analyze the interaction between source coding and secrecy using

multiterminal source coding theorems [5]–[7]. We derive inner and outer regions for
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the set of all source coding and equivocation (measure of secrecy) rates (which we call

the capacity region) for user-defined distortion criteria. We show that unconditional

secrecy is only achievable if the distortion is maximal, which means no information is

sent. We then show that feedback from the base station to the legitimate users does

not improve equivocation. We do this by deriving an upper bound on the secret key

rate that can be achieved without feedback, and comparing this to an upper bound

on the secret key rate using feedback [8], [9].

In the second part of our research, we extend the existing distributed source cod-

ing using syndromes (DISCUS) Slepian-Wolf coding scheme. DISCUS is the practical

implementation of the multitermianl source coding problem without distortion. We

show that using equivocation as the measure of secrecy leaks too much information to

the eavesdropper. This can be understood from our first result where unconditional

secrecy is unachievable and thus equivocation is not maximal. Thus this motivates

the definition of a set of additional secrecy requirements. We show how these ad-

ditional requirements can be implemented by modifying DISCUS. One of the main

results is that the subcodes in DISCUS should be maximum distance separable, and

furthermore we show how to partition a Reed-Solomon code to meet the subcode and

supercode requirements of DISCUS.

In the third part of our research we study the interaction between channel coding

and secrecy in the context of the general discrete memoryless interference channel.

We derive inner and outer regions of the secrecy capacity region, which is the set

of all channel coding rates such that unconditional secrecy is achieved. Surprisingly,

the secrecy capacity region is not empty, thus in contrast with the first part of our

research, interference permits unconditional secrecy. The proof utilizes the random

coding technique of Wyner’s wiretap channel [10] and its generalization [11].

In the final part of our research, we study the interference problem under wire-
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less settings by assuming that the interference channel has additive white Gaussian

noise, and later augmenting this model with the additional challenge of slow Rayleigh

fading. Again we derive inner and outer regions of the secrecy capacity region for this

special case. Significantly we show that the inner region can be simplified to such

an extent that its description is merely a single region based on an optimal power

allocation scheme without the need for pre-coding (as is the case with the DMIC);

for our problem at hand, this simplification is not trivial. Next, our extension of the

interference channel to slow and flat Rayleigh fading demonstrates that interference

and random fading are not only friends rather than foes, but are in fact necessary

enablers of unconditional secrecy.

If asked for one main important result in this dissertation, it would be the surpris-

ing result that independent noisy channels do not give the encoders any advantage in

terms of their ability to achieve unconditional secrecy; however, if the noisy channels

are dependent in the form of interference, then although the encoders cannot commu-

nicate with one another, they can rely on the dependence afforded by the interference

to help them collaborate in the “post-coding” sense.

Finally we point out that based on the need for a unified theme and a coherent

structure, this dissertation focuses only on the information theoretic results that we

have obtained for sensor network security. For additional and somewhat orthogonal

results on privacy and security in (visual) sensor networks, the interested reader is

referred to our earlier work in [12], [13].

C. Organization of Dissertation

In Chapter II we compare and contrast this dissertation to existing works in cryptog-

raphy research and more specifically, to information theoretic secrecy. In Chapter III
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we look at the source coding and secrecy problem, specifically, we examine the ca-

pacity region and the effect of feedback on equivocation. In Chapter IV we look at

practical coding for the problem in Chapter III. In Chapter V we study the secrecy

problem in the context of the discrete memoryless interference channel, thus switch-

ing gears to the channel coding problem. In Chapter VI we study the wireless setting

involving additive white Gaussian noise and the extension to slow and flat Rayleigh

fading.
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CHAPTER II

BACKGROUND

A. Challenges and Beneficial Characteristics of Sensor Networks

Before embarking on the specifics of our research, we examine some general chal-

lenges in sensor networks and identify beneficial characteristics which we exploit in

our formulation. As noted, resource constraints such as limited computation, memory

and battery life result in part from the envisioned miniaturized size of the nodes [3].

The limited (battery) power and antenna size in turn impact the signal-to-noise ratio

(SNR) thus limiting the available bandwidth. In addition, the environment may also

present communication obstacles in the form of incidental interference or intentional

jamming due to the presence of attackers [2]. The dynamic network topology resulting

from node depletion and replenishment presents a further challenge in that it alters

the routing topologies. Such routing changes inadvertently add to the difficulties

of achieving reliable and timely inter-node communication. Fig. 1 presents a more

detailed categorization of the various challenges that exist in sensor networks [1].

Importantly, these challenges can be addressed by considering the beneficial char-

acteristics which arise in sensor networks, such as the potential for decentralized

processing, node ubiquity (i.e. large-scale deployment) and the presence of natural

randomness which can be utilized for security purposes. The model which we propose

in the next section aims to inherently exploit such beneficial characteristics to achieve

a novel and clean modeling solution. As an example, the dynamic routing topology

present in sensor networks is not only a challenge, but also a characteristic which

may be exploited since it also poses problems for the potential eavesdropper. The

eavesdropper is forced to either discover and visit all the dynamic routes, or to settle
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Sensor Network Challenges

Resource
Constraints

Communication
Challenges

Operational
Challenges

- Node Size
- Computation
- Memory
- Battery

- Limited Bandwidth
- Latency
- Dynamic Topology

- Autonomy and Decentralization
- Attack-prone
- Large-scale Deployment

Fig. 1. Sensor Network Challenges

for an opportunistic strategy by remaining relatively stationary and waiting for the

packets to arrive. This implies that the eavesdropper may only intercept a fraction

of all the messages being communicated from the sensor nodes to the base station,

particularly when the number of sensors is large. Thus the dynamic routing topology

is a characteristics which may be exploited to the sensor network’s advantage.

B. Sensor Network Architecture and Security Model

Although we have cast our research in the light of sensor network secrecy, it is im-

portant to note that our results may have broader applicability to networks in which

many low-cost and low-power nodes share a common goal of protecting data as it is

transmitted to a more powerful central authority (base station).1 Fig. 2 summarizes

the general setup of our sensor network problem which is based upon a considera-

1We note that although the structure of this network may resemble that of a
cellular network with uplink communication, the goal of a sensor network differs
greatly from the cellular network case. In cellular networks, individual users are
independent of one another and are interested in optimizing their own throughput.
In contrast, in the networks that we describe the nodes work collectively towards the
achievement of one central goal: the collection and efficient relaying of data back to
the base station.
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.

.

.
Channel

...

Base
Station

Select a
subset of

Eavesdropper

Sensors

Fig. 2. General Sensor Network

tion of the sensor network challenges and opportunities as discussed in Section II-A.

As shown in Fig. 2, we consider the case where many sensor nodes collect (possibly

correlated) data and wish to encode their messages separately to alleviate the com-

munication burden. At the same time, the challenge of a dynamic routing topology

limits the eavesdropper’s interception rate to a fraction of the total messages. This

point is illustrated in Fig. 2 via the block titled “select a subset of” nodes, referring

to the attacker’s limitations. It is important to note that in this formulation we do

not consider intermediate node processing (such as aggregation), since our approach

enables the nodes to encode their data locally with efficiency (i.e. with near maxi-

mum achievable compression). However, since the data from all the nodes is available
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at the base station (or cluster-head in the case of hierarchical topologies), additional

processing may be performed at that stage with the benefit of shifting the processing

away from the power-limited nodes towards the more powerful unit.

We now outline and discuss the main features of our assumed security model.

In the terminology of our work, once a node’s message is encoded, it is referred to

as a share or encoded message. Our problem formulation states that the adversary

only has access to a small subset (to be defined) of shares generated by the nodes as

shown in Fig. 2. This is a reasonable assumption and requirement, especially if the

environment is so large that the adversary cannot cover all possible paths back to the

base station. We note that this assumption has also been made in the secret sharing

literature [14], though it has not been previously exploited in an information theoretic

consideration of sensor networks. The “limited shares” model of the eavesdropping

attacker may thus be a far more suitable model in the context of sensor networks.

In the event that the limited shares requirement is not satisfied however, the

methodology presented in our work is still applicable to sensor networks via limited

integration with key-based methods. Specifically, if the condition is not satisfied, the

eavesdropper has access to all shares generated by the nodes. In this scenario, con-

fidentiality based purely on our methods is not achievable. However, if conventional

key-based encryption is used at a limited number of nodes, the eavesdropper’s situa-

tion returns to the case where he is missing shares. In other words, if some shares are

additionally encrypted with keys, they become useless to the eavesdropper and thus

he has in his possession only a subset of usable shares (satisfying the original limited

shares assumption). Thus our model complements existing cryptographic schemes

efficiently. We also note that the overarching goal of encoding in our problem is to

jointly (and optimally) achieve secrecy and compression, or error correction. Thus

even if additional (limited) encryption via keys is required, our encoding stage is not
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wasted as it performs compression and error correction coding.

C. Information Theoretic Approach to Secrecy

In Section II-E we provide a full review of the state-of-the-art concerning the use

of information theory in cryptography. The aim of the current section is to provide

an efficient background summary with some key definitions, in preview of the full

literature review.

Shannon [15] was the first to propose the concept of conditional entropy (equiv-

ocation), which measures the number of bits of plaintext (the unencrypted message)

that is protected when the eavesdropper has in his possession the ciphertext (the

encrypted message). He defined unconditional secrecy as the condition where an

eavesdropper with unlimited computational time and complexity is unable to learn

anything regarding the plaintext by intercepting the ciphertext alone. Importantly,

he showed that in order to achieve unconditional secrecy, a secret key with the same

number of bits as the plaintext is necessary. Unfortunately this result effectively

states that to completely protect a message, one may as well just send this message

through a completely protected channel, since the establishment of a secret key mim-

ics this action. Whereas the secret key gives the legitimate party an advantage over

the eavesdropping adversary, the subsequent work of Wyner’s wiretap channel [10]

gives the legitimate party a better channel than that of the eavesdropper, thus cre-

ating an advantage for the legitimate party [16]. Since its inception, the wiretap

channel has been developed fundamentally by leading authorities [17]–[19], [11], [20],

[21]. All recent works are based on these fundamental works including our research.
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D. Differences from the Key Exchange & Management Approach to Secrecy

Traditional key-based cryptography is not the focus of our research, however we wish

to briefly list some differences between the security considered in this dissertation and

the paradigms explored in the key-based literature.

Traditional key-based security solutions generally require:

• The periodic refreshing of keys

• The off-line creation of keys (with the exception of information-theoretic key

exchange)

• The possession of matching keys by the base station (either the same keys in

the symmetric ciphers case, or different/private keys in the asymmetric ciphers

case)

• The safe-guarding of keys against an adversary (i.e. the keys must not be

disclosed)

In contrast, the physical layer security considered in this research mimics the effect of a

key by exploiting the inherent noise or randomness already present in the environment

in the form of channel noise and interference from other nodes. In other words, it is the

inherent randomness already present in the sensor network setting that is utilized to

encipher the contents of the data. This signifies that the manual refreshing of keys is

no longer required. Furthermore, since the noise-based randomness is readily available

in the environment, the “key” is generated and available in real-time. However the

most significant drawback of the key-based approach which we resolve in our method,

is the requirement for the intended receiving party to have a matching key. In our

work, the intended recipient must have a matching codebook instead. However the
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required codebooks may be disclosed publically, even to the adversary, and thus they

do not need to be refreshed or kept secret. In contrast, the key-based solution in

sensor networks requires that keys must be refreshed often due to the removal and

addition of nodes. Thus in the key-based approach, the base station must keep track

of the corresponding deletion and creation of keys which is less efficient than in our

approach.

E. Literature Review and Classification

The extensive field of cryptography may be classified into five main areas based on

the objectives under consideration as shown in Fig. 3. These five main areas consist

of confidentiality (protection from eavesdropping), data integrity (protection from al-

teration), authentication (protection from false identity), non-repudiation (protection

against non-commitment), and availability (protection against denial of service) [22]–

[25]. The focus of our research is the core confidentiality service which is of central

importance in sensor networks and other distributed networks. Within the area of

confidentiality, there are two main well-developed paradigms in cryptography and two

related areas which we mention for completeness. The two main areas of confidential-

ity are computational number theory (for public-key cryptography) and information

theory. The former has been used not only for analysis purposes but also for prac-

tical implementation, while the latter has mainly been used for theoretical analysis.

The adjoining paradigm of signal processing shown in Fig. 3 does not itself provide

security, however it is often used in combination with asymmetric or symmetric key

cryptographic schemes and it is listed for perspective and completeness [26]. The

algebra paradigm also shown in Fig. 3 refers to symmetric-key cryptography or block

ciphers such as the Data Encryption Standard (DES) or the Advanced Encryption
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Cryptography

Confidentiality Integrity Authentication Non-repudiation Availability

DataIdentity/Location

Information
Theory

Computational
Number Theory

Signal Processing Algebra

- uses existing
cryptographic tools in
combination with
signal processing

- public-key tools
- includes zero-
knowledge interactive
systems (protocols)
- includes applications
like key distritbution

- block ciphers
requiring secret key
(e.g. DES, AES)

Based on
Equivocation

Based on
Distortion

Shannon CipherWiretap
Channel

Secret Sharing
Common

Randomness

- broadcast channel
- relay channel
- interference channel
- multiple access channel
- feedback channels
- multiple antenna

- includes wiretap
channel of type II

- includes feedback
channels
- information-theoretic
key exchange
- privacy amplification

- includes rate-distortion
theory
- guessing wiretapper

Fig. 3. Classification of Research (Bold Indicates Elements in Research)

Standard (AES). In our research we focus solely on the use of the information theo-

retic approach. We employ Fig. 3 both as a classification mechanism and as a means

of visualizing the intended depth and breadth of our proposed research. The text

which appears in bold letters in Fig. 3 indicates areas explored in our research. We

note that the bottom layer of the classification scheme which reflects our research is

quite broad, covering many areas in the realm of information theory. Thus we refrain

from confining our research to a single area within the information theoretic approach

in hopes of offering a broader and more complete solution.



15

Finally we would like to point out that the information theoretic security re-

search belongs to the physical network layer, whereas the other security paradigms

and approaches are typically formulated and explored at the other network layers

as depicted in Fig. 4. The benefit of physical layer security is that it is performed

Application

Transport

Network

Physical Our work.

Most cryptographic work.

Most routing and addressing attacks
fit here, e.g.: DoS, sink/black/worm-
hole, packet spoofing, replay, hello
flood, sybil, location/address privacy

Fig. 4. Information-theoretic Security in the Physical Layer

jointly with either source or channel coding. This signifies that overall, the physical

layer approach should perform more efficiently (faster) than other approaches and

thus achieve performance which is more typical of cross-layer algorithms.

We now provide a description intended to further place our problem within the

existing information theoretic cryptography community. Within this community, a

wide range of problems have been extensively studied. The wiretap channel mentioned

in Section II-B is the most popular current area of research in information theoretic

security. Researchers working in this area have analyzed the tradeoff between se-

crecy/equivocation and channel coding for all the classical channels. In contrast,

the area of secret sharing experienced its highlight in the 1990’s, and thus most of

the work in this area has been completed. Finally, the area of common randomness
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and privacy amplification continues to be examined and has yielded an information-

theoretically secure protocol to exchange secret keys, which may then be used in

block and Shannon ciphers. We now provide an overview of these areas shown as the

bottom layer in Fig. 3.

1. The Wiretap Channel

We summarize some of the most important definitions and results within this well-

studied area of research. Due to the volume of work in this area, we will only describe

the problems and their similarities or differences to our problem.

a. Relay Channel

The relay channel with confidential messages is studied in the works of [27]–[29]. In

the setup, one party communicates with another party directly, as well as through a

relay node, which is used to help increase the capacity between the two parties. In

the case where a relay node is used, a requirement is placed which mandates that the

relay be kept ignorant of the secret message being transmitted. In a slightly different

setup [30], the relay node, which is usually used to help increase the capacity between

the legitimate parties, is used to increase the capacity for the eavesdropper instead.

b. Distributed Encryption

This area introduces a model similar to ours in that the attacker is allowed to eaves-

drop on a subset of the encoded messages [31]. However the authors only showed

that unconditional secrecy is unachievable when the encoders are determinstic and

when the channels are noiseless. In contrast, we derive the entire capacity region

(tradeoff between secrecy and compression) without such an assumption (i.e. by in-

cluding stochastic encoders). Thus part of our research generalizes and completely
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characterizes the problem in [31]. Finally we provide codes that achieve the promised

tradeoffs, whereas [31] does not provide a practical implementation.

c. Multiple Access Channel

In [32]–[34] the multiple access channel with confidential messages is studied. The

two senders can also listen to the channel, thus receiving a noisy version of the other

sender’s message. Each sender would like to keep the other sender ignorant regarding

his or her own secret message.

d. Interference Channel

In [35]–[37], the interference channel with confidential messages is considered. Two

transmitters wish to send to two different base stations, however their signals inter-

fere with one another. The base stations thus receive not only the intended message,

but also a noisy message from the unintended sender. The goal is to keep each base

station ignorant of the unintended secret messages. In our work we have one base

station that receives both messages, thus the base station performs joint decoding.

The interference wiretap channel is also specialized to the case when one of the trans-

mitter’s role is to interfere or jam one of the base stations, which belongs to the

eavesdropper [38]–[42].

e. Broadcast Channel

In [10], [17]–[19], [11], [20], [21], [43], [35], [36], [44] the broadcast channel with confi-

dential messages is studied under several setups and assumptions. The most general

setup is that one sender broadcasts signals containing multiple messages to multiple

base stations. The goal is for each base station to be kept ignorant of those secret

messages not intended for that base station. In [45]–[50] the broadcast channels are
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considered with random fading, thus making these results appropriate for wireless

communications.

f. MIMO Channel

The multiple-input multiple-output (MIMO) wiretap channel has recently received

much attention [51]–[62]. In this setting, the sender, receiver, and eavesdropper may

each be equipped with multiple antennas. The characterization of the secrecy capacity

under this setting is difficult, and two different schools of thought have arisen. In [57],

[61], a Sato-like argument is applied in which the legitimate receiver is given the

wiretap output as well (i.e. genie-aided), and the secrecy capacity for this upper

bound is minimized. It is shown that the resulting minimized upper bound is actually

the secrecy capacity region of the MIMO wiretap channel. In [62] a different approach

is used in which the legitimate receiver’s channel is enhanced such that the secrecy

capacity is preserved while permitting results from degraded wiretap channel to be

applied. In [63], [64] the MIMO wiretap channel is generalized to the case in which

both receivers are to receive legitimate messages intended for each receiver, but to be

kept ignorant of each other’s messages.

g. Feedback Channel

The presence of feedback provides the wiretap channel with several advantages. First,

when the legitimate channel is more noisy than the wiretap channel, feedback may

permit unconditional secrecy, whereas without feedback this is not possible [65], [66],

[8]. In addition when both forward and feedback channels are noisy, it may be possible

to increase the secrecy capacity to the usual one-way capacity without secrecy [67],

[68]. Finally the role of feedback in multiple user channels has be explored and found

to aid secrecy [69]. In contrast, feedback will be shown to provide no advantage in
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our problem.

2. Secret Sharing and the Wiretap Channel II

Secret sharing [14], [70]–[72] is a well-studied research area in which one node with

one secret creates and distributes several shares to distinct nodes. Each node alone is

incapable of knowing the secret, however a certain combination of the shares allows

the secret to be reconstructed. A bibliography containing more than 200 publications

dealing with secret sharing from its inception to 1998 is presented in [73]. The wiretap

channel II [74]–[77] problem is similar to the secret sharing problem in that each of

the letters in a wiretap channel II codeword can be viewed as an individual share.

An eavesdropper is given a subset of these shares via nature (erasure channel), thus

there is either a chance that the eavesdropper will receive many shares or only a few.

3. Common Randomness and Privacy Amplification

The general setup of the works of [66], [78], [8], [9], [79]–[82] is that two parties, A

and B, share a pair of correlated random vectors while a third eavesdropping party

also has a vector correlated with the two. The goal is for the two parties to distill a

secret key from their correlated random vectors that the eavesdropper is completely

oblivious to. The steps taken are: (1) reconciliation, in which party A sends additional

information to party B (and thus to the eavesdropper as well) through a noisy channel

so that party B can reproduce party A’s vector; (2) privacy amplification, in which

party A sends to party B (and to the eavesdropper) a hash function from the class

of universal hash functions; (3) key distillation in which both parties apply the hash

to their common vectors, thus producing a secret key completely unknown to the

eavesdropper. The secret key can thus be used as a one-time-pad to completely

secure any confidential message of the same length. In [83], the setup is similar
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except instead of exchanging a key between A and B, the goal is for A to securely

transmit its random vector (correlated with B and the eavesdropper) to B, such that

it is secure from the eavesdropper; thus in this case the message itself should be

protected.

4. Comparison of Our Research to Related Work

We now compare our work to the literature briefed above. Table I shows the different

criteria (rows) being compared against the different information theory secrecy works

(columns). An entry of Yes/No means that only in certain cases has the criterion been

considered. For the first seven criteria, answering No does not signify a weakness in

the work, but rather an inappropriateness for a wireless sensor network.

Table I. Comparison with Related Work

Ours Relay MAC Int. Br./MIMO SS

1. Separate Encoding Yes No Yes Yes No No

2. Joint Decoding Yes Yes Yes/No No No Yes

3. Coop. Enc. Nodes Yes No Yes/No Yes/No N/A N/A

4. Multiple Messages Yes No Yes Yes Yes Yes/No

5. Multiple Routes Yes Yes Yes/No Yes Yes Yes

6. Keyless Yes Yes Yes Yes Yes Yes

7. Random Fading Yes - - - Yes/No N/A

8. Rate-Distortion Yes - - - - -

First the following non-standard abbreviations are explained: MAC (multiple

access channel), Int. (interference channel), Br. (broadcast channel), SS (secret

sharing). The Separate Encoding criterion is essential in sensor networks to reduce
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network traffic, as well as to save power and communication resources. Furthermore,

nodes should perform the encoding locally to avoid transmitting unprotected data to

a central authority for processing. The Joint Decoding criterion means that there is

one base station that receives all message from the sensors including those intercepted

by the eavesdropper. We assume that the eavesdropper may acquire a subset of the

base station’s received signals since there may be insider attacks at the base station;

thus this models a worst case scenario in which most wiretap channel problems do

not consider. The Cooperative Encoding Nodes criterion means that all encoding

nodes are working towards the same objective and are thus collaborative. This is in

contrast with a cellular network where all the users wish to achieve a high throughput

but do not necessarily collaborate. The Multiple Messages criterion arises from the

fact that each node sends a different (but possibly correlated message). The Keyless

Criterion was motivated at the beginning of this dissertation as an efficient alterna-

tive sensor network approach. The Random Fading criterion is suitable for wireless

communications in various outdoor settings such as in sensor networks. Finally, the

Rate-Distortion criterion is relevant to visual sensor networks since media such as

video or images are typically compressed in a lossy manner. We thus consider the use

of rate-distortion theory in our work as presented in [84]. We note that the use of rate-

distortion theory with secrecy has been studied by Yamamoto [85]–[87]. Also in [88],

a source coding and secrecy problem is considered in which the legitimate receiver

also receives side information, whereas the eavesdropper receives the same encoded

message as the legitimate receiver, but without any additional side information.

We would like to point out that the above literature survey includes only the-

oretical results. Practical coding research for the wiretap channel is growing in the

following three areas: (1) wiretap channel coding [89], [82], [90], 2) source coding

and secrecy, which have not been widely studied to-date [91] rendering our work in



22

Chapter IV pioneering in nature, and finally (3), the wiretap channel II, which is the

most extensively-studied of the three listed coding problems [92].

5. Relationship of Existing Literature to Our Work

Our research takes on elements of all the above reviewed works and we now further

elaborate on how they are related. From a problem point-of-view, our security model

is similar to the secret sharing and wiretap channel II problem in that an eavesdropper

is only permitted to eavesdrop on a small subset of all encoded messages, whereas

the base station receives all the encoded messages. The difference is that in our work

we require that all nodes encode their messages separately without communicating

with one another, whereas in the secret sharing and wiretap channel II problem one

central authority encodes all the messages. Furthermore in most wiretap channels

(such as the broadcast channel), one node broadcasts messages to several nodes. In

our problem we consider the reverse scenario: several nodes send messages to one

node, namely the base station. In the setup of other wiretap channels such as the

multiple access channel (MAC) and the interference channel (Int.), several nodes send

to one base station. However the base station does not receive the encoded messages

that are intercepted by the eavesdropper. In other words the eavesdropper and the

legitimate base station have different channels, which is not the case in our problem

setup. In our work elements of secret sharing, as well as the wiretap channel (MAC

and interference) will be combined in a novel way and used in our solution.
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CHAPTER III

MULTITERMINAL SOURCE CODING AND DISTRIBUTED SECRECY∗

In this chapter we analyze the interaction between source coding and secrecy using

multiterminal source coding theorems [5]–[7]. We derive inner and outer regions for

the set of all source coding and equivocation (measure of secrecy) rates (which we call

the capacity region) for user-defined distortion criteria. We show that unconditional

secrecy is only achievable if the distortion is maximal, which means no information

is sent. We then show that feedback from the base station to the legitimate users

does not improve equivocation. We do this by deriving an upper bound on the secret

key rate that can be achieved without feedback, and by comparing this to an upper

bound on the secret key rate using feedback [8], [9].

The system model studied in this chapter is motivated by the idea that a cluster of

sensors within close proximity of one another is likely to record correlated readings. In

keeping with the inter-node communicationless and keyless requirements introduced

and motivated in Chapter I, our sensor nodes encode independently and without using

any secret materials (e.g. cryptographic keys). On the other hand, the eavesdropper

faces the challenge of a large world that makes it difficult to collect many encoded

messages (i.e. only a proper subset of encoded messages can be intercepted by the

eavesdropper), which was motivated in Chapter II.

*Part of the material in this chapter is reprinted with permission from W. Luh
and D. Kundur, “Distributed Keyless Security for Correlated Data with Applications
in Visual Sensor Networks” in Proc. ACM Multimedia and Security Workshop, Dallas,
Texas, September 2007, pp. 75-86. http://doi.acm.org/10.1145/1288869.128881
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A. System Model

For clarity in presentation, we consider a two-node sensor network. Fig. 5 summarizes

the source coding aspect of our problem in this chapter. Let Sk
A ∈ Sk

A and Sk
B ∈ Sk

B

denote Alice’s and Bob’s messages, respectively. Alice’s and Bob’s messages are

generated by a joint discrete memoryless source (DMS) given by Eq. 3.1.

P k
SA,SB

(sk
A, sk

B) =
k∏

i=1

PSA,SB
(sA,i, sB,i) (3.1)

Alice and Bob are to encipher their Sk
A, Sk

B separately without cooperation creating

WA ∈ WA and WB ∈ WB, respectively, where WA,WB are finite sets.

The base station (BS) receives both WA and WB, and its goal is to reconstruct

Sk
A and Sk

B within some fidelity criterion to be discussed below. Let the quadruple

(fk
A, fk

B, ϕk
A, ϕk

B) denote Alice’s (possibly stochastic) encoder, Bob’s (possibly stochas-

tic) encoder, and the BS’s decoders to reconstruct Alice’s and Bob’s messages, re-

spectively. Here fk
A : Sk

A → WA, fk
B : Sk

B → WB, ϕk
A : WA × WB → Ŝk

A, and

ϕk
B : WA ×WB → Ŝk

B, where Ŝk
A and Ŝk

B are the finite reconstruction alphabets for

Alice and Bob, respectively.

If the encoders fk
A, fk

B are stochastic, they can be defined without loss of gen-

erality by deterministic encoders f ′k
A, f ′k

B, where the randomness comes from locally

generated RVs TA, TB, respectively as shown below.

WA = fk
A(Sk

A) = f ′k
A(Sk

A, TA) (3.2)

WB = fk
B(Sk

B) = f ′k
B(Sk

B, TB) (3.3)

The random variables TA, TB may for example simulate choosing a codeword randomly

from the subsets of WA,WB, respectively.

Let ρk
A : Sk

A × Ŝk
A → R

+ be the block distortion measure between Alice’s original
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Fig. 5. Distributed Source Coding for Secrecy with Distortion Criteria Model

message block sk
A and the BS’s reconstruction ŝk

A; similarly ρk
B : Sk

B × Ŝk
B → R

+ is

the block distortion measure for Bob’s message. Following Shannon rate-distortion

theory, the block distortion measures are defined by single-letter distortion measures

ρj : Sj × Ŝj → R
+ for j = A, B so that the block distortion measure is an average of

the single-letter distortion measures as in Eq. 3.4.

ρk
j (s

k
j , ŝ

k
j ) =

1

k

k∑
i=1

ρj(sj,i, ŝj,i), j = A, B (3.4)

Hence the BS’s reconstruction distortion criteria can be specified by two real non-

negative numbers representing Alice’s and Bob’s messages, DA > 0 and DB > 0,

respectively, such that the expected distortion is bounded by these two numbers as

in Eqs. 3.5 and 3.6 for ε > 0 arbitrarily small. The expectation is taken over all

random quantities, such as the original message blocks Sk
A, Sk

B, as well as the possibly

stochastic encoders fk
A, fk

B via TA, TB, respectively.

E[ρk
A(Sk

A, Ŝk
A)] ≤ DA + ε (3.5)

E[ρk
B(Sk

B, Ŝk
B)] ≤ DB + ε (3.6)
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In other words, for a distortion pair (DA, DB), the encoders and decoders (fk
A, fk

B, ϕk
A, ϕk

B)

satisfying Eqs. 3.5 and 3.6 are said to satisfy the distortion criteria (DA, DB).

The (source coding) rates of Alice’s and Bob’s enciphered messages are defined

as

RA � log2 |WA|
k

(3.7)

RB � log2 |WB|
k

. (3.8)

In Fig. 5, the eavesdropper, referred to as Eve, is allowed to select either WA or

WB, but not both. To justify our definition of secrecy we require H(SA) = H(SB),

which is equivalent to Alice and Bob sensing the same phenomenon in the same

physical space. Depending on which enciphered message Eve selects, the equivocation

rates of Eve w.r.t. Alice and Bob are defined as

∆A � H(Sk
A|WA)

k
(3.9)

∆B � H(Sk
B|WB)

k
. (3.10)

A stronger definition of secrecy would be to replace the numerators in Eqs. 3.9 and

3.10 with H(Sk
A, Sk

B|Wi), however Eqs. 3.9 and 3.10 are defined to simplify the model,

and can be justified as follows. Assume Eve intercepts WA, then Sk
B ↔ Sk

A ↔ WA

form a Markov chain and by the data processing inequality, Eve learns less about Sk
B

than she does of Sk
A. Formally we can write

H(Sk
A, Sk

B|WA) (a)
= H(Sk

B|WA) + H(Sk
A|WA, Sk

B)

= H(Sk
A|WA) + H(Sk

B|WA, Sk
A)

(b)
= H(Sk

A|WA) + H(Sk
B|Sk

A)

(c)
= H(Sk

A|WA) + H(Sk
A|Sk

B)
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where (b) follows from the Markov chain Sk
B ↔ Sk

A ↔ WA, and (c) from the assump-

tion H(SA) = H(SB). Thus we then have H(Sk
A|WA) ≤ H(Sk

B|WA) by comparing (a)

and (c).1

Definition 1 A quadruple (dA, dB, rA, rB) corresponding to (∆A, ∆B, RA, RB) is achiev-

able w.r.t (DA, DB) if there exists a sequence of encoders and decoders (fk
A, fk

B, ϕk
A, ϕk

B)

such that as k → ∞

RA ≤ rA + ε (3.11)

RB ≤ rB + ε (3.12)

dA − ε ≤ ∆A ≤ dA (3.13)

dB − ε ≤ ∆B ≤ dB (3.14)

for ε > 0 arbitrarily small and such that Eqs. 3.5 and 3.6 are also satisfied. In

addition, all parties, Alice, Bob, and Eve, have complete knowledge of fk
A, fk

B (except

for the possibly locally generated RVs TA, TB), and any cryptographic keys used.

B. Capacity Region

The capacity region R(DA, DB) is defined to be the set of all quadruples (dA, dB, rA, rB)

that are achievable w.r.t to the distortion criteria (DA, DB). Outer and inner regions,

Rout(DA, DB) and Rin(DA, DB) are defined to be sets such that

Rin(DA, DB) ⊆ R(DA, DB) ⊆ Rout(DA, DB).

1Since we are deriving a negative result, by showing unconditional secrecy is un-
achievable under this weaker definition of secrecy (Eqs. 3.9 and 3.10), we are nec-
essarily implying that unconditional secrecy is also unachievable under the stronger
definition.
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The inner region is any set of equivocation and source coding rates in which one can

find some coding scheme to achieve these equivocation and source coding rates. On

the other hand the outer region is any set of equivocation and source coding rates

such that any such rates not in this set are necessarily not achievable, i.e. there exists

no coding scheme to achieve rates outside the outer region. Of course the goal is to

find inner and outer regions equal to one another, which equals the capacity region

R(DA, DB) itself. Generally

Rin(DA, DB) �= Rout(DA, DB),

due to the existing gap between the outer and inner regions for the multiterminal

source coding (MSC) problem [5]–[7]. However, in some special cases, the inner and

outer regions converge.

Definition 2 Define P(DA, DB) as the set of auxiliary RVs (QA, QB) jointly dis-

tributed with (SA, SB) such that:

(i) QA ↔ SA ↔ SB and SA ↔ SB ↔ QB;

(ii) there exist functions FA : QA ×QB → ŜA and FB : QA ×QB → ŜB such that

E[ρA(SA, ŜA)] ≤ DA (3.15)

E[ρB(SB, ŜB)] ≤ DB (3.16)

where

ŜA = FA(QA, QB) (3.17)

ŜB = FB(QA, QB). (3.18)

Theorem 1 (Outer Region) For a fixed (QA, QB) ∈ P(DA, DB) define Ro(QA, QB)
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to be the set of all (dA, dB, rA, rB) that satisfy

0 ≤ dA ≤ H(SA) (3.19)

0 ≤ dB ≤ H(SB) (3.20)

dA + dB ≤ H(SA) + H(SB) − I(SA, SB; QA, QB) (3.21)

rA ≥ I(QA; SA, SB|QB) (3.22)

rB ≥ I(QB; SA, SB|QA) (3.23)

rA + rB ≥ I(SA, SB; QA, QB) (3.24)

rA + dA ≥ H(SA) (3.25)

rB + dB ≥ H(SB). (3.26)

Then

Rout(DA, DB) �
⋃

(QA,QB)∈P(DA,DB)

Ro(QA, QB)

is an outer region.

Theorem 1 is proved in Section III-D-1.

Theorem 2 (Inner Region) For a fixed (QA, QB) ∈ P(DA, DB) define Ri(QA, QB)

to be the set of all (dA, dB, rA, rB) that satisfy

0 ≤ dA ≤ H(SA) (3.27)

0 ≤ dB ≤ H(SB) (3.28)

dA + dB ≤ I(SA; SB) + H(SA|SB, QA) + H(SB|SA, QB) (3.29)
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rA ≥ I(SA; SB, QA|QB) (3.30)

rB ≥ I(SB; SA, QB|QA) (3.31)

rA + rB ≥ H(SA, SB) − H(SA|SB, QA) − H(SB|SA, QB) (3.32)

rA + dA ≥ H(SA) (3.33)

rB + dB ≥ H(SB). (3.34)

Then

Rin(DA, DB) �
⋃

(QA,QB)∈P(DA,DB)

Ri(QA, QB)

is an inner region.

Theorem 2 is proved in Section III-D-2.

1. Discussion

From Theorems 1 and 2 we can conclude that unconditional secrecy is in general

impossible. Also in general, the outer and inner regions do not match. The capacity

region is a 4-dimensional hyper-polygon. Since we are interested in the amount of

equivocation (secrecy) that is achievable, Fig. 6 depicts a 2-dimensional projection

of the general hyper-polygon onto the variables of interest: ∆A, ∆B; the polygons

are the achievable equivocation rates for Alice and Bob parametrized by their source

coding rates RA, RB (this relation is not shown in Fig. 6) for various cases.

The worst case (corresponding to the smallest triangle region) occurs when Alice

and Bob process different (but correlated) messages under a zero-distortion criterion

(that is the base station is required to reconstruct each of Alice’s and Bob’s messages

Sk
A, Sk

B perfectly). Neither Alice nor Bob can achieve unconditional secrecy since the

diagonal line corresponds to I(SA, SB), which is strictly less than H(Si) for i = A, B

required for unconditional secrecy. Also, the less correlated Sk
A, Sk

B, the smaller the
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A

B

Unconditional
Secrecy for both

Alice and Bob

Maximum distortion

General (varying distortion)

Same message, zero distortion

Different messages, zero distortion

H(S
B
)

H(S
A
)

Fig. 6. Equivication Rate Regions

equivocation rate region.

When the correlation is “perfect” in the sense that Alice and Bob are processing

the same message, i.e. Sk
A = Sk

B, the corresponding equivocation rate region is

the largest triangular region. In this case Alice or Bob may achieve unconditional

secrecy, but not simulatenously; if Alice achieves unconditional secrecy, then Bob has

no secrecy (zero equivocation). The interpretation of this scenario is that Alice sends

nothing to the base station, while Bob sends the entire unenciphered message to the

base station. Alice and Bob’s secrecy can be thought of as being “shared” on the

diagonal line of the triangular equivocation rate region. What is interesting about

this result is not the achievability (sufficiency result), but rather the impossibility
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of achieving any pair of equivocation rates that do not follow this “shared” secrecy

interpretation, i.e. the diagonal line.

By allowing distortion upon decoding at the base station, the equivocation rate

region becomes a pentagon. Increasing distortion increases the vertical and horizontal

lines in the pentagon, while reducing the length of the diagonal line. When the

distortion is maximal, the pentagon degenerates (diagonal disappears) to the square in

which case, the desired maximum equivocation for Alice and Bob (i.e. unconditional

secrecy) is included in the outer region. Whereas in the above two cases the inner and

outer regions match, in general, given distortion criteria the inner and outer regions

do not match.

The above discussion shows that unconditional secrecy may be achieved only

when the distortion is maximal, which implies nothing useful is sent from Alice and

Bob. This also suggests that adding (independent) noise alone, either by the encoders

or via independent channels gives no secrecy advantages as it usually does in other

wiretap channels.

C. Feedback and Equivocation Rate

We show that feedback from the receiver (base station) to the legitimate encoding

parties (Alice and Bob) generally does not increase secrecy if all channels including

Eve’s channel are noiseless, even if Eve is permitted to eavesdrop on only one of the

feedback streams. This is in contrast with the wiretap channel with feedback results

in [65], [66], [8], [9], [80], [68] in which public feedback does increase secrecy.

We consider different types of feedback that can occur based on the three criteria

listed in Table II. These three criteria are True Feedback (as opposed to Artificial

Feedback), Knowledge of Previous Eavesdrop, and Knowledge of Future Feedback
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Table II. Different Types of Base Station Feedback

Yes No

True Feedback (as opposed to artificial feedback)? 1 0

Knowledge of Previous Eavesdrop? 1 0

Knowledge of Future Feedback Eavesdrop? 1 0

Eavesdrop. In the first criterion, the receiver can send information to Alice and Bob,

ZA and ZB, respectively, based on the ŝk
A or ŝk

B reconstructed from WA and WB

(true feedback), or the BS can send arbitrary information independent from what

it received from Alice and Bob (artificial feedback). In the second criterion, the

receiver may either have knowledge of which Wj, for j = A or j = B, Eve previously

intercepted, or have no such knowledge. Finally in the third criterion, the receiver

may have knowledge of which Zj, j = A or j = B Eve will intercept, or have no

such knowledge. These three criteria thus result in eight possible types of feedback.

We can systematically analyze all the different feedback cases succinctly since we are

only interested in whether secrecy capacity may be increased or not. Using Table II,

the case 101 corresponds to: true feedback, no knowledge of previous eavesdrop, and

knowledge of future feedback eavesdrop. The case *00 corresponds to either true

or artificial feedback, no knowledge of previous eavesdrop, and knowledge of future

feedback eavesdrop. We now summarize the salient results obtained for the various

types of feedback:

• Case **1: If the BS knows Eve will not be eavesdropping on ZB for instance,

then the BS can add a tag to ZB informing Bob that ZB may be used as a

one-time pad for Bob’s future transmission to the BS, thus secrecy for Bob is

increased via the one-time pad cipher.
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• Case 110: Feedback either does not help or can actually decrease secrecy. The

proof is given in Section III-D-3.

• Case 100: Without knowledge of what Eve possess, this case performs worst

than the case 110.

• Case 0*0: Artificial feedback does not improve secrecy, nor does it decrease

secrecy. The proof is given in Section III-D-3.

Note that although feedback does not improve secrecy in the Shannon equivoca-

tion sense, feedback can improve computational secrecy, e.g. BS sends the parties its

public-key for asymmetric ciphers [25].

D. Proofs and Ancillary Results

1. Proof of Theorem 1

Assume that some (dA, dB, rA, rB) is achievable such that Eqs. 3.11 to 3.14 are satisfied

along with the Markov constraint in Eq. 3.35.

WB ↔ Sk
B ↔ Sk

A ↔ WA (3.35)

Then we shall show that the following bounds of Eqs. 3.19 to 3.26 for all ε > 0 are

necessarily true for fixed encoders and decoders (fk
A, fk

B, ϕk
A, ϕk

B). Note that Eqs. 3.19

and 3.20 are trivial bounds. Eqs. 3.22 to 3.24 are multiterminal source coding bounds

[5], [6].

First we prove Eq. 3.21. Before proceeding, we state a well known lemma.

Lemma 1 If X ↔ Y ↔ Z forms a Markov chain, then

I(X; Y |Z) = I(X; Y ) − I(X; Z). (3.36)
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Our goal is to upper and lower bound I(Sk
A, Sk

B; WA, WB). First we derive the upper

bound.

I(Sk
A, Sk

B; WA, WB) = I(Sk
A; WA, WB) + I(Sk

B; WA, WB|Sk
A)

= I(Sk
A; WA) + I(Sk

A; WB|WA) + I(Sk
B; WA, WB|Sk

A)

= I(Sk
A; WA) + I(Sk

A; WB|WA) + I(Sk
B; WA|Sk

A)

+I(Sk
B; WB|Sk

A, WA)

= I(Sk
A; WA) + I(Sk

A; WB|WA) + I(Sk
B; WB|Sk

A, WA) (3.37)

since I(Sk
B; WA|Sk

A) = 0. The original Markov chain of Eq. 3.35 induces WB ↔ Sk
B ↔

(Sk
A, WA), and using Lemma 1 gives

I(Sk
B; WB|Sk

A, WA) = I(Sk
B; WB) − I(WB; Sk

A, WA)

= I(Sk
B; WB) − I(WA; WB) − I(Sk

A; WB|WA) (3.38)

where the final equality made use of the chain rule again. Therefore applying Eq. 3.38

to Eq. 3.37 gives

I(Sk
A, Sk

B; WA, WB) = I(Sk
A; WA) + I(Sk

B; WB) − I(WA; WB)

= H(Sk
A) − H(Sk

A|WA) + H(Sk
B) − H(Sk

B|WB) − I(WA; WB)

≤ H(Sk
A) − H(Sk

A|WA) + H(Sk
B) − H(Sk

B|WB). (3.39)

The lower bound of I(Sk
A, Sk

B; WA, WB) is stated in the following lemma, which

is proved in [5], [6].

Lemma 2 For a fixed (fk
A, fk

B, ϕk
A, ϕk

B)

I(Sk
A, Sk

B; WA, WB) ≥ kI(SA, SB; QA, QB). (3.40)

where (QA, QB) ∈ P(DA, DB) is determined by the source statistics and (fk
A, fk

B, ϕk
A, ϕk

B).
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Although Lemma 2 is derived for determinstic encoders, the lower bound also applies

to stochastic encoders. Essentially the sum of the source coding rates is lower bounded

by I(SA, SB; QA, QB) for fixed encoders and decoders; using stochastic encoders would

not lower this bound (i.e. stochastic encoders do not achieve better compression

rates).

Now combining Eqs. 3.39 and 3.40, and then rearranging yields

H(Sk
A|WA) + H(Sk

B|WB) ≤ H(Sk
A) + H(Sk

B) − kI(SA, SB; QA, QB). (3.41)

Next, dividing by k and using the definitions in Eqs. 3.9, 3.10 and Eqs. 3.13, 3.14

gives

dA + dB ≤ H(SA) + H(SB) − I(SA, SB; QA, QB) + 2ε (3.42)

proving Eq. 3.21.

Next we prove Eqs. 3.25 and 3.26, which follow simply from the chain rule:

H(Sk
A) = kH(SA) ≤ H(Sk

A, WA) = H(WA) + H(Sk
A|WA)

≤ log2 |WA| + H(Sk
A|WA). (3.43)

Now dividing by k and using the definitions for rate and equivocation rate (see Eqs. 3.7

and 3.9), and then using the definition of achievability of these rates (see Eqs. 3.11

and 3.13) results in

H(SA) ≤ RA + ∆A ≤ (rA + ε) + dA (3.44)

which proves Eq. 3.25. Eq. 3.26 may be proved in the same way.
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2. Proof of Theorem 2

Eqs. 3.30 to 3.32 are directly from [7]. One can achieve Eq. 3.29 without any secrecy

coding simply by (determinstic) source coding. If Alice and Bob each compress their

messages to the boundaries promised by Eqs. 3.30 to 3.32 for some (QA, QB) ∈
P(DA, DB), then it is easy to see that

∆A + ∆B = H(SA) − RA + H(SB) − RB

= H(SA) + H(SB) − H(SA, SB)

+H(SA|SB, QA) + H(SB|SA, QB) (3.45)

where the first equality follows since approximately k(H(SA) − RA) bits (for k suffi-

ciently large) are unknown to Eve given she possess the kRA bits of WA, and similarly

k(H(SB) − RB) bits for Bob. The second equality follows by using Eq. 3.32 with

equality. The reader can verify that Eq. 3.45 is equivalent to Eq. 3.29.

3. Derivation of Feedback Bounds

a. Case 110

For the following discussion, suppose the BS knows Eve intercepted WA, which we

will denote as W̃A, where the tilde is used to indicate a previous round (the reader can

prove the other case when the BS knows Eve intercepted W̃B using the same method).

We put forth a lemma which helps us show there is no advantage in feedback from

the BS to Alice.

Lemma 3 If

I(S̃k
A; W̃A, W̃B|W̃A) ≤ k∆̃A − H(S̃k

A|W̃A, W̃B) (3.46)

then feedback from BS to Alice provides no advantage, given the BS knows Eve pos-



38

sesses W̃A.

Proof: Without feedback, Alice can distill a secret key (from S̃k
A and W̃A) of length

k∆̃A bits that is independent of W̃A. However since the BS reconstruction is dis-

torted, Alice’s secret key must be reduced by H(S̃k
A|W̃A, W̃B), which represents the

unrecoverable distortion. Thus Alice and the BS can distill a secret key of length

given by the right hand side (RHS) of Eq. 3.46 without the need for feedback from

the BS.

Theorem 3 of [9] shows that through feedback from the BS to Alice, a secret key

of maximum length I(S̃k
A; W̃A, W̃B|W̃A) bits can be established. Thus feedback from

the BS to Alice given the BS knows Eve posses Alice’s W̃A results in a secret key of

maximum length given by the left hand side (LHS) of Eq. 3.46.

Clearly, if a secret key derived using feedback has length less than or equal to

a secret key derived without feedback, then feedback offers no advantage; this is the

significance of Eq. 3.46. Furthermore, both keys cannot be used at the same time

since they are both derived from S̃k
A and W̃A. This concludes the proof of Lemma 3.

We can now explicitly show that Lemma 3 is true, and thus feedback provides

no advantage.

I(S̃k
A; W̃A, W̃B|W̃A) = H(S̃k

A|W̃A) − H(S̃k
A|W̃A, W̃B)

= k∆̃A − H(S̃k
A|W̃A, W̃B) (3.47)

Thus Lemma 3 is true and feedback from the BS to Alice provides no advantage.

Next, under the same assumption that the BS knows Eve has W̃A, we show that

feedback from the BS to Bob has no advantage either. Let

m � I(S̃k
B; W̃A, W̃B|W̃A) (3.48)
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where m is the maximum number of bits of secret key that can be established between

the BS and Bob through feedback, given the BS knows Eve posses W̃A [9]. In this

case, it can be shown that m does not satisfy a modified Lemma 3 (for Bob instead

of Alice). However Lemma 3 (and a modified version for Bob) provides a sufficient

condition only, and thus failure to satisfy the condition in Lemma 3 does not imply

there is an advantage using feedback.

Again, let tilde variables represent the previous round, while non-tilde variables

represent the current round. To analyze the benefits of feedback, let kRB ≥ m,

which allows the secret key derived through feedback to be fully used. Let WB

denote Bob’s current enciphered message without feedback, and let W F
B denote Bob’s

current enciphered message using feedback ZB. Then

k∆F
B = k∆B + m (3.49)

which results because the m bits of the secret key can be used as a one-time pad. For

example, suppose WB is in binary form, and WB,1 is the first m bits of WB, while

WB,2 is the last kRB − m bits of WB. Then

W F
B = (WB,1 ⊕ KB, WB,2) (3.50)

where KB is the m-bit key created from feedback.

In order for an improvement in equivocation using feedback, we must show

H(Sk
B, S̃k

B|ZB, W F
B , W̃A) > H(Sk

B, S̃k
B|WB, W̃A)

= H(S̃k
B|W̃A) + H(Sk

B|WB).

(3.51)
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The previous message block S̃k
B must be considered since the feedback ZB is a function

of S̃k
B. Next we upper bound the LHS of Eq. 3.51.

H(Sk
B, S̃k

B|ZB, W F
B , W̃A) = H(S̃k

B|ZB, W F
B , W̃A) + H(Sk

B|S̃k
B, ZB, W F

B , W̃A)

≤ H(S̃k
B|ZB, W̃A) + H(Sk

B|S̃k
B, ZB, W F

B , W̃A)

=
(
H(S̃k

B|W̃A) − I(S̃k
B; ZB|W̃A)

)
+

(
H(Sk

B|W F
B ) − I(Sk

B; S̃k
B, ZB, W̃A|W F

B )
)

= H(S̃k
B|W̃A) − I(S̃k

B; ZB|W̃A) +
(
H(Sk

B|WB) + m
)

−I(Sk
B; S̃k

B, ZB, W̃A|W F
B ) (3.52)

The last equality follows from Eq. 3.49. Next we bound the final term in Eq. 3.52.

I(Sk
B; S̃k

B, ZB, W̃A|W F
B )

(a)
≥ I(Sk

B; KB|W F
B )

(b)
= H(KB|WB,1 ⊕ KB, WB,2)

−H(KB|Sk
B, WB,1 ⊕ KB, WB,2)

(c)
= H(KB|WB,1 ⊕ KB)

−H(KB|Sk
B, WB,1, KB, WB,2)

(d)
= H(KB) = m (3.53)

The explanations are: (a) from the fact that KB can be derived from S̃k
B and ZB by

Bob; (b) from Eq. 3.50; (c) WB,2 is assumed to be independent of KB and WB,1, and

WB,1 can be derived from Sk
B (determinstic encoding); (d) KB is used as a one-time

pad [9].

Combining Eq. 3.53 into Eq. 3.52 shows Eq. 3.51 is not satisfied, thus feedback

does not offer any advantage. In fact when I(S̃k
B; ZB|W̃A) > 0 in Eq. 3.52, feedback

strictly performs worst than no feedback.
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This proves the case when the BS knows Eve possesses W̃A. The other case when

the BS knows Eve posses W̃B can be proved in the same way.

b. Case 0*0

We analyze the 010 case, while the result for the 000 case follows from the 010 case.

Suppose the BS knows Eve possess WA. Theorem 3 of [9] shows that a secret key of

maximum length I(Sk
j ; M |WA) bits may be distilled, where M is a RV generated by

the BS independent of all messages and received material. This quantity is 0 since

M is independent, and thus artificial feedback produces no shared secret key.

E. Summary of Results

In this chapter we studied the source coding and secrecy tradeoffs for the sensor

network model of Fig. 5. From our analysis, we summarize the following conclusions.

First unconditional secrecy (or maximum secrecy) cannot simultaneously be achieved

by all parties in general unless the distortion is necessarily maximal, which implies

that no information is disclosed to the base station as well. Furthermore, since the

encoders may be stochastic, this implies independent noisy channels cannot improve

secrecy, otherwise such virtual channels may be included inside the encoders, which

contradicts the results. Next, the inner and outer regions only match for the case when

distortion is not permitted at the base station, while the inner and outer regions do

not match for the case when distortion is permitted at the base station. In the former

case, this implies that we have completely characterized the capacity region for the

distortionless case. An outcome of this characterization is that source coding alone

is enough to achieve the highest equivocation rates possible. In the latter case (i.e.

allowing distortion at the base station), the capacity region is not fully characterized
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due to the gap between the inner and outer regions, which suggests that perhaps

additional coding (other than source coding) may improve secrecy. Finally, a natural

question we asked is whether public feedback from the more powerful base station can

improve secrecy. Unfortunately, we have shown that feedback from the base station

offers no improvement in secrecy in most realistic scenarios unless the base station

unrealistically knows a priori a specific feedback channel will be free of eavesdropping.
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CHAPTER IV

SECURE DISCUS∗

Although in the absence of distortion Slepian-Wolf encoding alone suffices to achieve

the optimal equivocation rates (see Chapter III), and therefore any distributed source

code may be applied, in practice the resulting secrecy is mediocre, giving the eaves-

dropper too much information concerning the message without the eavesdropper hav-

ing to do any work.

Thus we define additional secrecy requirements that not only resolves the short-

comings of simply using equivocation as the measure of secrecy, but also account for

the possible scenario in which the eavesdropper has access to uncoded symbols from

the message in addition to intercepting the corresponding encoded message (similar

threat model as [76]).

While the exploration of the capacity of various wiretap channel models has re-

cently received much attention, practical coding for these models is only beginning to

emerge [91], [89]. The contribution of this chapter is the extension of DISCUS (dis-

tributed source coding using syndromes) to include the practical measure of secrecy

briefed above.

A. System Model

We define the problem for m users who have random messages (column vectors)

Uk
1 , . . . , Uk

m ∈ (GF (q))k with each Galois field element equally likely, and the correla-

*Part of the material in this chapter is reprinted with permission from W. Luh
and D. Kundur, “Secure Distributed Source Coding with Side-Information,” IEEE
Communication Letters, vol. 12, no. 4, pp. 310-312, April 2008. c© 2008 IEEE.
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tion between the messages modeled by

w(Uk
1 + · · ·+ Uk

m) ≤ t, (4.1)

where w(·) is the Hamming weight, and addition is over GF (q).1 The m users are to

separately and linearly encode (jointly encipher and source code) their realizations

uk
1, . . . , u

k
m, resulting in Galois vectors xn1

1 , . . . , xnm
m , respectively, via the relationship

xni
i = Hiu

k
i (4.2)

for i = 1, . . . , m such that His are ni × k matrices.2 Given all xni
i , i = 1, . . . , m, the

decoder is to reproduce all uk
i , i = 1, . . . , m without error.

The eavesdropper is permitted to have at his disposal only one xni
i ; we later

generalize this to include the case when the eavesdropper has multiple xni
i . In addition

the eavesdropper is also permitted to have αi uncoded symbols from uk
i if he intercepts

xni
i . These extra uncoded symbols (similar threat assumptions as in [76]) are the

eavesdropper’s side-information. The goal is to design an encoding and decoding

scheme for the above system model, such that the eavesdropper cannot uniquely

solve for any other symbols in uk
i given that he has xni

i and the corresponding side-

information. This level of secrecy is not unconditional, but may be satisfactory for

certain applications, e.g. lightweight video encryption [94].

1This correlation model can be found in [93].
2Consideration of nonlinear codes is beyond the scope of this dissertation. In

practice nonlinear codes may offer better protection against a wide assortment of
cryptanalysis attacks. However the security of nonlinear codes is in general difficult
to prove mathematically, while linear codes are amenable to analysis.
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B. Coding Scheme

Our codes belong to the class of distributed source coding using syndromes (DISCUS)

[95]. In the DISCUS scheme, a supercode with the capability of correcting t-errors

(the same t as in Eq. 4.1) is partitioned into m (where m is the number of users)

subcodes in which the parity check matrices of these subcodes are used in Eq. 4.2 to

encode each of the user’s messages. We now present the components and properties

of our codes with the relevant proofs stated in Section IV-C.

1. Code Construction

We have at our disposal conditions on the supercode (error correction capability

equal to correlation [95]) and the subcodes (MDS from Theorem 5) for DISCUS with

secrecy. However, simply choosing MDS subcodes will often result in unacceptable

supercodes. Similarly, choosing an acceptable supercode and arbitrarily partitioning

the supercode into subcodes will often result in non-MDS codes, e.g. in [96] we showed

this is the case for the DISCUS codes in [93]. This section derives codes that satisfy

both conditions.

Algorithm 1 (found near the end of this chapter) provides a method of con-

structing DISCUS codes that are both decodable (zero errors), and secure in the

sense developed in Section IV-A.3

Theorem 3 If Hi, i = 1, . . . , m are selected using Algorithm 1 and the eavesdropper

has side-information restricted to αi < ai (ai from Algorithm 1), then the encoding

scheme is secure and uniquely decodable.

3As in the original DISCUS, the drawback is that these codes do not always exist
for all parameters.
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2. Decoding

Algorithm 2 (found near the end of this chapter) outlines a fast approach to decoding

(as opposed to an exhaustive search), when the decoder has all xni
i , i = 1, . . . , m. The

systematic version of this algorithm is sketched (via an example) in [95]. Algorithm 2

is more general in that it also decodes some non-systematic forms by adding Line 1.

We include the entire algorithm for completeness.

Theorem 4 Algorithm 2 decodes without error, i.e. ûk
i = uk

i for all i = 1, . . . , m.

3. Multiple Eavesdropping

Algorithm 1 only allows the eavesdropper to have access to one encoded message with

some corresponding side-information. We now analyze the above code for the case

when the eavesdropper has access to multiple encoded messages.

Proposition 1 If the eavesdropper has access to µ encoded messages {xnj1
j1

, . . . , x
njµ

jµ
}

for 1 < µ < m, and any amount of side-information, then the scheme of Algorithm 1

is not secure. If the eavesdropper has no side-information, then the scheme of Algo-

rithm 1 is secure.

4. Discussion

a. Intuition on MDS Subcodes

We give an (informal) intuition on the MDS subcode condition. The SW (Slepian-

Wolf) coding scheme basically partitions each user’s message space into disjoint bins.

The encoded result is the syndrome of the message, which also characterizes the bin,

i.e. the syndrome can be thought of as a bin index that uniquely identifies that bin.

If the eavesdropper intercepts only one of these bin indices, then the eavesdropper

must guess the actual message belonging to this bin.
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In DISCUS, for decodability reasons, the bins are cosets of a linear code. Our

additional condition is that this linear code should be a MDS code to provide security.

We motivate this informally by looking at a counter-example. Suppose the bin in

consideration contains the actual linear code. Suppose the messages in this bin have

very low minimum distance. Then this means that many symbols in the same symbol

coordinate may be identical. If the eavesdropper is given a few uncoded symbols, then

the number of possible messages from this bin is reduced. It may then be possible

to guess other symbols of the actual message if there is some symbol-coordinate such

that the symbols are all identical in this reduced message set. For example if the

eavesdropper is given one bit resulting in the reduced message set {0010, 0011, 0111},
then the eavesdropper knows the first and third bits are 0 and 1, respectively. Thus

the eavesdropper learns at least one additional bit.

If the linear code is a MDS code, then the codewords in the linear code are

separated as far as possible. The phenomenon described in the counter-example is less

likely to occur, unless the eavesdropper is given more uncoded symbols than allowed

by our theorem. Since cosets of a linear code share the same minimum distance

properties, this holds whether the eavesdropper intercepts a bin index corresponding

to the actual linear code or one of its cosets.

b. Type of Security

Shannon’s lesser known landmark paper on secrecy systems [15] is divided into three

parts: the first part is on the algebra of secrecy systems, the second part on perfect

secrecy, and the third part on practical secrecy (diffusion-confusion, and statistical

attacks). Most secrecy papers deal with either the second part (information-theoretic
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works) or third part (DES, AES, etc.).4 In this section we show that our scheme

shares the same type of secrecy as a pure cipher from the first part of [15] if the

messages are uniformly distributed.

A (Shannon) cipher can be represented by a bipartite graph, such that one set

of nodes corresponds to the messages, while the other set of nodes corresponds to the

encoded messages (ciphertexts). The edges connecting nodes in both sets represent a

message being encoded into the ciphertext, and vice versa in decoding. The edges are

associated with a key. In our keyless problem, we can also represent the encoding by a

bipartite graph, but the edges do not represent the use of any keys. Furthermore, this

graph would not describe decoding, since decoding in our case is performed jointly

over all encoded messages.

Informally a pure cipher is one in which its bipartite graph can be partitioned

such that each partition (called residue class) can be regarded as a sub-cipher that

has “perfect” secrecy in the sense that given a ciphertext, any message in that residue

class is equally likely. In our scheme, given that the messages are all equally likely, an

eavesdropper with a bin index of a coset essentially must consider all messages in that

coset. This anology is illustrated in Fig. 7. Of course if the messages are not equally

likely, then the analogy to pure ciphers does not hold. Thus the level of security in

our scheme is determined by the size of each bin, which is related to the length k of

the input messages.

c. Duality

In [97] a direct duality between the channel coding and source coding (rate-distortion)

theorems is presented. The channel encoder and decoder are constructed together.

4Even more papers deal with the computational number theory paradigm com-
monly referred to as the public-key paradigm, which is not part of Shannon’s paper.
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(a) Pure Shannon Cipher (b) Encoding Graph

Residue Class 1

Residue Class 2

Residue Class 3

Messages Ciphertexts

Coset 1

Coset 2

Coset 3

Messages Bin Indices

Fig. 7. Analogy Between Pure Shannon Cipher and Our Encoding Scheme: (a) In

Each Residue Class Given a Ciphertext, Any Message in That Residue Class Is

a Possibility; (b) Given a Bin Index, Any Message in That Coset Is a Possibility

The idea is to select codewords such that their decoding regions {Di} are optimal.

On the other hand, source encoding operates by mapping all words inside a Di to the

index i, thus resulting in compression. Therefore in the channel coding setup, the

messages (input to encoder) are the indices i for {Di}, whereas in the source coding

setup, the message space is the entire
⋃

i Di, and the is are the outputs of the source

encoder.

We point out a similar duality in our codes and those of the wiretap channel II.

The wiretap channel II (and more generally the wiretap channel) concerns secrecy

and channel coding, whereas the problem we presented concerns secrecy and source

coding. In the wiretap channel II, the encoder partitions a set of codewords into
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bins, and a codeword from a bin is randomly selected if the message corresponding

to that bin index is to be transmitted. Although the legitimate channel is usually

noiseless in the wiretap channel II, the wiretapper’s channel is considered as an erasure

channel. In our code, the messages are partitioned into bins (as outlined in the

previous subsection). We send the bin index instead of a codeword from the bin.

Our problem setup has similarities and differences to [76]. In both cases the eaves-

dropper is allowed some uncoded symbols of the messages that need to be protected.

Interestingly, [76] also shows that MDS codes may be used. The main difference is

that in our problem, the two users cannot collaborate, and there is no shared keys or

random variables between the two users. The restriction causes unconditional secrecy

to not be achievable (see Chapter III).

C. Proofs and Ancillary Results

While the supercode requirement of being t-error-correctable aids decodability [95],

the secrecy requirement is satisfied when the subcodes are maximum distance sepa-

rable (MDS) codes; this is stated explicitly in Theorem 5 along with restrictions on

the quantity of side-information available to the eavesdropper.

Theorem 5 Let αi < k − ni. The eavesdropper cannot solve for any symbols other

than those given as side-information in uk
i for each i = 1, . . . , m if and only if the

subcodes are each maximum distance separable.

Thus Theorem 5 is the driving force behind the validity of Algorithm 1.

1. Proof of Theorem 5

Theorem 5 is proved using two lemmas. The proof of Lemma 4 is adapted from [98];

we have included a version of the proof that clarifies many subtle points. We state
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Lemma 4 for one of the subcodes, therefore we drop the subscripts 1 or 2.

Lemma 4 (Adapted from [98]) Let H be a n × k matrix with n < k. Define the

1 × k vector

Ii = (0 · · · 0 1︸︷︷︸
ith entry

0 · · · 0).

If α < k − n and

dim(rowspace(H) ∪ span{Ij1, . . . , Ijk−n
}) = k (4.3)

for any set of unique {Ij1, . . . , Ijk−n
}, then given xn = Huk, and any α symbols from

uk, no other symbols in uk can be solved for uniquely.

Proof: We prove the contrapositive, i.e. given xn and α < k−n uncoded symbols in

uk, if we can solve for an additional β > 0 uncoded symbols in uk then there exists

some set of unique {Ij1, . . . , Ijk−n
} such that

dim(rowspace(H) ∪ span{Ij1, . . . , Ijk−n
}) < k. (4.4)

Suppose {uj1, . . . , ujα+β
} is the set of uncoded symbols including both those given to

the eavesdropper, and the extra β that can be solved. Without loss of generality,

assume that {uj1, . . . , ujα} are given as side-information, while {ujα+1, . . . , ujα+β
} can

be solved for given the side-information and given xn. This implies that for each ujm,

m = α + 1, . . . , α + β, there exists a row vector (bm,1, . . . , bm,n+α) such that

(bm,1, . . . , bm,n+α)




xn

uj1

...

ujα




= ujm, (4.5)
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i.e. (bm,1, . . . , bm,n+α) applied to what is given to the eavesdropper reveals the symbol

ujm, m = α + 1, . . . , α + β, which is equivalent to

(bm,1, . . . , bm,n+α)




H

Ij1

...

Ijα




uk = Ijmuk. (4.6)

Thus each Ijm, m = α + 1, . . . , α + β is in the rowspace of




H

Ij1

...

Ijα




. This implies

dim(rowspace(H) ∪ span{Ij1, . . . , Ijα+β
}) ≤ n + α. (4.7)

Next there are two cases to consider. First consider the case when α + β > k − n. In

this case it easily follows that

dim(rowspace(H) ∪ span{Ij1, . . . , Ijk−n
})

(a)
≤ dim(rowspace(H) ∪ span{Ij1, . . . , Ijα+β

})
(b)
≤ n + α

(c)
< k (4.8)

where (a) follows since α+β > k−n (first case), (b) from Eq. 4.7, (c) from assumption

of lemma: α < k − n. Thus the first case satisfies the contrapositive of the lemma.
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Consider the second case when α + β ≤ k − n. In this case it easily follows that

dim(rowspace(H) ∪ span{Ij1, . . . , Ijk−n
})

= dim(rowspace(H) ∪ span{ Ij1 , . . . , Ijα+β︸ ︷︷ ︸
correspond to solved symbols

,

Ijα+β+1
, . . . , Ijk−n︸ ︷︷ ︸

correspond to any unsolved symbols

})

(a)
≤ (n + α) + (k − n − (α + β))

= k − β
(b)
< k (4.9)

where the n + α term in (a) follows from Eq. 4.7, while (b) follows since β > 0 by

the assumption of the contrapositive. Therefore the second case also satisfies the

contrapositive of the lemma.

The second lemma is the link between Lemma 4 and Theorem 5.

Lemma 5 (From [96]) Eq. 4.3 is satisfied if and only if any n columns of H have

a non-zero determinant.

The proof we gave in [96] was succinct and lacked clarity concerning many subtle

points due to space limitation. We now give a complete proof.

Proof: Assume that H fails Lemma 4. Then there exists some {Ij1, . . . , Ijk−n
} such

that Eq. 4.4 is true. In particular this implies

(a1, . . . , an)H = b1Iji
+ · · · + bk−nIjk−n

(4.10)

for some (a1, . . . , an) �= (0, . . . , 0) and (b1, . . . , bk−n) �= (0, . . . , 0). For example, if Ij1

is a culprit, i.e. it is in the rowspace of H (thus Eq. 4.4 is true), then (b1, . . . , bk−n) =

(1, 0, . . . , 0) is a possibility. Let H[{1,...,k}−{j1,...,jhk−n
}] represent the n columns of H
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whose column indices are not from {j1, . . . , jk−n}. Then from Eq. 4.10

(a1, . . . , an)H[{1,...,k}−{j1,...,jk−n}] = (0, . . . , 0). (4.11)

Since (a1, . . . , an) �= (0, . . . , 0), this implies detH[{1,...,k}−{j1,...,jk−n}] = 0.

Conversely, suppose there exist n columns of H that have a zero determinant.

Let Hn represent these n columns. We use the following fact concerning the nullspace

of a square matrix A:

nullspace(A) = {(0, . . . , 0)} iff A full rank. (4.12)

Thus since detHn = 0, Hn is not full rank, and the nullspace of Hn contains more than

just (0, . . . , 0), i.e. there exists a (c1, . . . , cn) ∈ nullspace(Hn) such that (c1, . . . , cn) �=
(0, . . . , 0). This is equivalent to

(c1, . . . , cn)Hn = (0, . . . , 0), (4.13)

which implies

(c1, . . . , cn)H = d1Ij1 + · · · + dk−nIjk−n
(4.14)

where now the indices {j1, . . . , jk−n} are those indices that do not correspond to

the column indices of Hn. We now show that since (c1, . . . , cn) �= (0, . . . , 0), this

implies that there exists some 1 ≤ l ≤ k − n such that dl �= 0. To prove this

we consider the contrapositive of this statement; suppose dl = 0 for all l, which is

equivalent to (c1, . . . , cn)H = (0, . . . , 0). Since the rows of H are independent, the

definition of independence implies that (c1, . . . , cn) = (0, . . . , 0) necessarily. Thus

the contrapositive is that (c1, . . . , cn) �= (0, . . . , 0) implies there exists at least one

dl �= 0. This proves that there exists some dl �= 0. Thus some linear combination of

{Ij1, . . . , Ijk−n
} is in the rowspace of H implying the dimension in Eq. 4.3 is less than
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k.

Using the two lemmas, we can finally prove Theorem 5.

Proof of Theorem 5: We prove that if H satisfies Lemma 5, then it is a parity check

matrix of a MDS code. We use the fact that the minimum distance of a linear code is

equivalent to the smallest number of columns of H that are linearly dependent. Since

every n columns in H are full rank if H satisfies Lemma 5, the minimum distance is

at least

dmin ≥ n + 1. (4.15)

Note that the generator matrix corresponding to parity check matrix H would be a

(k − n)× k matrix, and thus by the Singleton bound dmin ≤ k − (k − n) + 1 = n + 1,

which implies dmin = n+1 by Eq. 4.15. Since dmin satisfies the Singleton bound with

equality, the code with parity check matrix H is a MDS code. This concludes the

proof of Theorem 5.

Finally we note that the above two lemmas can be generalized such that the

conditions are sufficient and necessary. See [98] and [96] for the converse proofs.

Therefore the condition of MDS is necessary and sufficient as stated in Theorem 5.

2. Proof of Theorem 3

The matrix A is a general parity check matrix of a Reed-Solomon code (when the

decoder and channel alphabets are equal, which is the case here, i.e. the alphabets are

all GF (k +1)), which are MDS codes. Since the dual of a MDS code is also MDS, we

consider A as a generator matrix of a MDS code. This implies the minimum distance

equals the Singleton bound dmin = k − (2s) + 1. Therefore the linear code with

generator matrix A can correct
⌊

k
2
− s

⌋
� t errors. Therefore if A is the generator

matrix of the supercode, then unique decodability is possible given the correlation
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model, Eq. 4.1, and the Slepian-Wolf (SW) constraints are satisfied [99]. Since Hi

is a (k − ai) × k matrix from Algorithm 1, the side-information constraint αi <

k − (k − ai) = ai follows from Theorem 5. Furthermore, since Uis are each uniformly

distributed over GF (k +1), the source coding rate given by Eq. 4.28 and constrained

by Eq. 4.29 is simply the Slepian-Wolf theorem. Therefore we have proved that

zero-error decodability is achieved given the above constraints are satisfied.

Next we must check that the His are parity check matrices of MDS codes for

all i = 1, . . . , m (to satisfy Theorem 5). In general, partitioning a MDS code may

not result in MDS subcodes. However, the choice of starting with A in Algorithm 1

facilitates the generation of MDS subcodes as we show. Since Ai is a BCH parity

check matrix, which corresponds to a cyclic code, and since the dual code of a cylic

code is also cyclic, we can consider Ai as a generator matrix of a cyclic code. Thus

the parity check polynomial corresponding to the generator matrix Ai is equal to

hi(x) =

a+
i∏

l=a−
i

(x − ξ−l) =

a+
i∏

l=a−
i

(x − ξk−l) =

k−a−
i∏

l=k−a+
i

(x − ξl) (4.16)

where

a−
i =

(
i−1∑
j=1

aj

)
+ 1, a+

i =

i∑
j=1

aj . (4.17)

Therefore the generator polynomial corresponding to generator matrix Ai is given by

gi(x) =
xk − 1

hi(x)
=

k−a+
i −1∏

l=1

(x − ξl)
k∏

l=k−a−
i +1

(x − ξl) =

2k−a+
i −1∏

l=k−a−
i +1

(x − ξl) (4.18)

where the final equality follows since ξk+l = ξl. Since the generator polynomial has

roots that are consecutive powers of the primitive element ξ, the code it generates is

by definition Reed-Solomon, which is MDS.
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3. Proof of Theorem 4

For succinctness we prove Theorem 4 for two users, i.e. m = 2. Left-side multiplica-

tion of Eq. 4.2 Ei yields

w̃ni
i = H̄iu

k
i (4.19)

for i = 1, . . . , m (see Line 1). We claim

uk
i = GT

i vi +




w̃ni
i

0

...

0




, (4.20)

which can be verified by left-side multiplication with H̄i (see Eq. 4.30) resulting in

Eq. 4.19. Defining ek = uk
1 + uk

2 yields

GT
1 v1 + GT

2 v2 +




w̃n1
1

0

...

0




+




w̃n2
2

0

...

0




= ek (4.21)

or

rk =


 G1

G2




T 
 v1

v2


 + ek (4.22)

referring to Line 2 for the definition of rk. Eq. 4.22 can be interpreted as follows: rk

is a noisy codeword from the code generated by


 G1

G2


. Note that the rowspace of


 G1

G2


 is identical to the rowspace of A from Algorithm 1 since the operations on

His are elementary row operations. Therefore we can use a Reed-Solomon decoder
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(Line 3), corresponding to the code with generator matrix A. The decoder will return

a unique codeword ck since the error ek = uk
1 + uk

2 has weight less than t given by the

correlation model, and the code generated by A corrects t errors or less. Since there

is a unique message corresponding to each codeword of a linear code, we can solve

for the vector in Line 5. Substituting back into Eq. 4.20 yields the decoded messages

uk
1, u

k
2.

4. Proof of Proposition 1

Given {xnj1
j1

, . . . , x
njµ

jµ
}, we can write


x
nj1
j1

...

x
njµ

jµ


 =




Hj1 0 0

0
. . . 0

0 0 Hjµ







uk
j1

...

uk
jµ


 . (4.23)

Eq. 4.23 will be conveniently denoted by

x = Hu. (4.24)

It can easily be seen that H is no longer the parity check matrix of a MDS code,

since its minimum distance is strictly less than the Singleton bound. This is proved

by considering H as a generator matrix; thus the codewords generated by H are

precisely the concatenation of codewords generated by Hj1, . . . ,Hjµ. Therefore the

codewords generated by H must have minimum distance

dmin = min{dmin,j1, . . . , dmin,jµ} (4.25)

where dmin,ji
is the minimum distance of the code corresponding to generator matrix

Hji
. Therefore the code generated by H is not MDS. Now since a code is MDS if and

only if its dual is MDS, the code whose parity check matrix is H is also not MDS.
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Therefore H is not secure given the eavesdropper has side-information.

However, when the eavesdropper does not have side-information, we show that

H is secure. Now if there exists a 1 × (nj1 + · · ·+ njµ) row vector bi such that

bix = biHu = Iµk
i u (4.26)

where now Iµk
i is a 1 × µk row vector with 1 in position i and 0 elsewhere, then the

eavesdropper can solve for the ith symbol in u. Eq. 4.26 is equivalent to

Iµk
i ∈ rowspace(H).

Thus if we show that Iµk
i /∈ rowspace(H) for all i = 1, . . . , µk, then the eavesdropper

cannot solve for any symbols in u. First we show that the rows of H are independent.

This can be seen since the rows of each Hj1, . . . ,Hjµ are independent. Since these

Hj1, . . . ,Hjµ are stacked in the form of Eq. 4.23, the rows of H are independent. Now

suppose for some arbitrary Iµk
i , column i runs through Hr in H. Therefore Iµk

i is

not in the rowspace consisting of all rows in H with matrices Hl, l �= r, since the ith

element in each of these Hl is 0, while it is 1 in Iµk
i .

Thus we only have to check that Iµk
i is not in the rowspace consisting of the rows

in H with matrix Hr, i.e.

Iµk
i /∈ rowspace

(
0 · · · 0 Hr 0 · · · 0

)
. (4.27)

If we truncate the matrix above (right hand side of Eq. 4.27) by eliminating the 0

matrices, and truncate the corresponding symbols in Iµk
i , then the matrix reduces to

Hr, while the vector Iµk
i reduces to some 1 × k row vector Il, l ∈ {1, . . . , k}. But

since Hr is secure (since it is MDS by the proof of Algorithm 1), Il /∈ rowspace(Hr),

and thus Eq. 4.27 is also true.

There is one final technical point that we must prove. We have been assuming



60

that all u realizations in Eq. 4.24 are equally likely. This is true so long as µ < m

(where m is the total number of users). If µ = m, i.e. if the eavesdropper has

access to all encoded messages, then by the correlation model (see Eq. 4.1), some

u realizations (in Eq. 4.24) are impossible, because these u violate Eq. 4.1. On the

other hand if µ = m − 1, then there is no constraint on {uk
j1

, . . . , uk
jµ
}; only the mth

ujµ+1 would have to be chosen so that all m messages satisfy Eq. 4.1. Thus as long

as the eavesdropper has fewer than m encoded messages, the corresponding original

messages are all equally likely, and thus u (in Eq. 4.24) are all equally likely.

D. Summary of Results

In this chapter we studied practical coding schemes based on DISCUS for the theo-

retical problem in Chapter III. First we defined a practical measure of secrecy that

extends beyond the equivocation measure. This measure protects each symbol in the

message, rather than the message as a whole. We showed that the MDS property is a

necessary requirement on the subcodes of DISCUS. We then derived a coding scheme

based on DISCUS where the challenge lies in satisfying this subcode requirement while

satisfying the DISCUS supercode requirement at the same time. We showed that if

the eavesdropper only possesses one encoded message and “a few” uncoded symbols

from the message, then the other symbols in the message cannot be revealed with

certainty. However if the eavesdropper possesses more than one encoded message,

then the eavesdropper must not be permitted to possess any uncoded symbols.
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Algorithm 1 Finding Secure Parity Check Matrices

Require: Hi for all i = 1, . . . , m.

Ensure:

(i) U1,j, . . . , Um,j ∈ GF (k + 1) uniformly distributed where k + 1 is a power of a

prime number and k ≥ 2(s + t);

(ii) Eq. 4.1 is satisfied;

(iii) ξ is a primitive element in GF (k + 1) and

A =




1 ξ ξ2 · · · ξ(k−1)

1 ξ2 ξ4 · · · ξ2(k−1)

...
...

...
. . .

...

1 ξ2s ξ4s · · · ξ2s(k−1)




1: Partition the matrix A =




A1

...

Am


 such that the Ais are ai × k matrices, and

Ri � k − ai

k
log2(k + 1) (4.28)

for all i = 1, . . . , m satisfy

∑
i∈S

Ri ≥ H
(
(Uj)j∈S | (Uj)j∈{1,...,m}−S

)
(4.29)

for all S ⊆ {1, . . . , m}. If this is not possible, then these rates cannot be used.

2: Select His such that AiH
T
i = 0 for all i = 1, . . . , m.
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Algorithm 2 Decoding

Require: ûk
i = uk

i for all i = 1, . . . , m.

Ensure: xni
i = Hiu

k
i for all i = 1, . . . , m where Hi generated as in Algorithm 1.

1: Compute w̃ni
i = Eix

ni
i where Ei for all i = 1, . . . , m are elementary matrices such

that

EiHi =

(
I H̃i

)
� H̄i (4.30)

where I is the identity matrix.

2: Compute the rk =




w̃n1
1

0

...

0




+ · · · +




w̃nm
m

0

...

0




, where the zero-padding makes each

vector in the sum k × 1.

3: Use a Reed-Solomon decoder (e.g. Berlekamp-Massey algorithm) to decode the

received word rk based on the RS code whose generator matrix is A from Algo-

rithm 1. The output of the decoder is the codeword ck.

4: Let Gi be the systematic generator matrix corresponding to parity check matrix

H̄i (see Eq. 4.30) such that

Gi =

(
G̃i I

)
.

5: Solve for column vectors vi, i = 1, . . . , m in

ck =

(
GT

1 · · · GT
m

) (
vT

1 · · · vT
m

)T

6: Compute

ûk
i = GT

i vi +

(
(w̃ni

i )T 0 · · · 0

)T

(4.31)

for all i = 1, . . . , m.
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CHAPTER V

CHANNEL CODING AND DISTRIBUTED SECRECY∗

In this chapter we study the interaction between channel coding and secrecy in the

context of the general discrete memoryless interference channel. We derive inner and

outer regions of the secrecy capacity region, which is the set of all channel coding rates

such that unconditional secrecy is achieved. Surprisingly, the secrecy capacity region

may not be empty, thus in contrast with the first part of our research, interference

permits unconditional secrecy. The proof utilizes the random coding technique of

Wyner’s wiretap channel [10] and its generalization [11].

The system model studied in this chapter is motivated by the usage of mobile

relay nodes. First the data gathering nodes are to encode their data without commu-

nicating with one another, and without the use of any cryptographic keys as motivated

in Chapter I. The nodes’ encoded data are then transmitted to nearby mobile re-

lay nodes where their signals interfere with one another. We assume that a subset

of these mobile relay nodes may be eavesdropped upon as motivated in Chapter II.

These mobile nodes then travel until they are close to the base station where their

payload is finally relayed to the base station without interference, but experience

independent noise.

A. System Model

In Chapter III, the channels are noiseless, which means that the encoded messages

never mix as they are transmitted to the base station. In contrast, the problem

*Part of the material in this chapter is reprinted with permission from W. Luh
and D. Kundur, ”Distributed Secret Sharing for Discrete Memoryless Networks,”
IEEE Trans. on Information Forensics and Security, 2008, to appear. c© 2008 IEEE.
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formulated here allows the encoded messages to mix via interference. Fig. 8 sum-

Alice’s 
Enc 

Bob’s 
Enc 

Channel 
q(y A , y B | x A , x B ) 

W A 

W B 

X A 
n 

X B 
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Y A 
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n 
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Y B 
n ~ 

^ 

^ 

Channel 

v A (y A  | y A ) 
~ 

Channel 

v B (y B  | y B ) 
~ 

W A 

W B 

Eve 

Fig. 8. Discrete Memoryless Sensor Network with Interference Model

marizes a sensor network secrecy model, which includes interference and additional

noise for the BS decoder. Alice and Bob each process independent and uniformly

distributed messages WA ∈ WA and WB ∈ WB, respectively such that WA,WB are

finite sets. These messages may actually be generated from the encoder in Chapter III

if the original data is correlated. Let the triple (fA, fB, ϕ) denote Alice’s (possibly

stochastic) encoder, Bob’s (possibly stochastic) encoder, and the BS’s decoder. Note

that in the previous chapters the superscript k was used to indicate that the source

messages consisted of blocks of k letters; here the source messages are indices, thus

there are no superscripts. Also, the base station had two decoders in Chapter III

due to the need for different distortion criteria; here there are no distortion criteria,

thus only one decoder suffices. Thus in this case fA : WA → X n
A , fB : WB → X n

B ,

ϕ : Ỹn
A × Ỹn

B → ŴA × ŴB.

The discrete memoryless interference channel is characterized by the conditional

probability q(yA, yB|xA, xB). The BS receives encoded messages that are addition-
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ally corrupted by the two independent discrete memoryless channels vA(ỹA|yA) and

vB(ỹB|yB). This is a more realistic model than most wiretap channels since the BS is

further from Alice and Bob than Eve, thus realistically the BS should receive noisier

encoded messages, which is accounted for by vA(·|·), vB(·|·).
The channel coding rates are defined by

R1 � log2 |WA|
n

(5.1)

R2 � log2 |WB|
n

(5.2)

corresponding to the encoders fA, fB. We use the subscripts 1 and 2 to distinguish

the channel coding rates from the source coding rates in Eqs. 3.7 and 3.8. For this

problem we are only interested in rates that achieve unconditional secrecy (maximum

equivocation) since as we shall see, this is possible!1

Definition 3 A pair (r1, r2) corresponding to (R1, R2) is achievable if there exist

encoders and decoder (fA, fB, ϕ) such that as n → ∞

R1 > r1 − ε (5.3)

R2 > r2 − ε (5.4)

H(WA, WB|Y n
i )

n
> R1 + R2 − ε (5.5)

P (n)
e < ε (5.6)

for i = A, B and ε > 0 arbitrarily small where

P (n)
e =

1

2n(R1+R2)

∑
(w1,w2)∈
W1×W2

Pr{(Ŵ1, Ŵ2) �= (w1, w2)|(w1, w2) sent}. (5.7)

1Unconditional or perfect secrecy was originally defined by I(WA, WB; Y n
i ) = 0 or

H(WA, WB|Y n
i ) = H(WA, WB) for i = A, B. In this dissertation we use the weaker

definition established in [10], i.e. Eq. 5.5, but still refer to this as unconditional
secrecy.
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In addition, all parties, Alice, Bob, and Eve have complete knowledge of fA, fB (except

for any locally generated randomness) and any cryptographic keys used.

B. Secrecy Capacity Region

We derive sufficiency and necessity theorems. The outer region is now denoted Cout

while the inner region is denoted by Cin.

Theorem 6 (Outer Region) Let Cout be the set of (r1, r2) that satisfy

r1 + r2 ≤ min




max I(VA, VB; ỸA, ỸB|J) − I(VA, VB; ỸA|J),

max I(VA, VB; ỸA, ỸB|J) − I(VA, VB; ỸB|J),

max I(VA, VB; YA, YB|J) − I(VA, VB; YA|J),

max I(VA, VB; YA, YB|J) − I(VA, VB; YB|J)




, (5.8)

where the maxima are over J ↔ (VA, VB) ↔ (XA, XB) ↔ (YA, YB) ↔ (ỸA, ỸB),

J ↔ (VA, VB) ↔ (XA, XB) ↔ (YA, YB) ↔ (ỸA, ỸB), J ↔ (VA, VB) ↔ (XA, XB) ↔
(YA, YB), J ↔ (VA, VB) ↔ (XA, XB) ↔ (YA, YB), respectively, and the distribution

factors as

PJ,VA,VB,XA,XB,YA,YB,ỸA,ỸB
= PJPVA|JPVB |JPXA|VA

PXB |VB
PYA,YB|XA,XB

PỸA|YA
PỸB|YB

.(5.9)

Then Cout is an outer region.

Theorem 6 is proved in Section V-C-1.

Theorem 7 (Inner Region) For each PJ,VA,VB,XA,XB
factored as

PJ,VA,VB ,XA,XB
= PJPVA|JPVB|JPXA|VA

PXB |VB
(5.10)
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Cinner is defined as the set of all (r1, r2) such that

r1 =
∣∣R̄1 − U1

∣∣+ (5.11)

r2 =
∣∣R̄2 − U2

∣∣+ (5.12)

r1 + r2 < I(VA, VB; ỸA, ỸB|J) − I(VA, VB; Yi|J) (5.13)

and

0 < U1 < I(VA; Yi|VB, J) (5.14)

0 < U2 < I(VB; Yi|VA, J) (5.15)

I(VA, VB; Yi|J) − ε < U1 + U2 < I(VA, VB; Yi|J) (5.16)

0 < R̄1 < I(VA; YA, YB|VB, J) (5.17)

0 < R̄2 < I(VB; YA, YB|VA, J) (5.18)

0 < R̄1 + R̄2 < I(VA, VB; YA, YB|J) (5.19)

for i = A, B. Then

Cin �
⋃

PJ,VA,VB,XA,XB

Cinner (5.20)

where the distributions factor as in Eq. 5.10 is an inner region.

Theorem 7 is proved in Section V-C-2.

1. Discussion

Theorem 6 suggests the possible existence of rates (since the result is an outer region)

that achieve unconditional secrecy. From Theorem 7 it is difficult to see by visual

inspection if there are actual rates that do achieve unconditional secrecy. We will

give an example for the discrete memoryless case derived in Theorem 7.
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Fig. 9. Binary Erasure Sensor Network

The proof of Theorem 7 (see Section V-C-2) is based on the observation that

the base station sees a multiple access channel (MAC) with two outputs, whereas

Eve sees a MAC with only one output, depending on which noisy encoded messages

she intercepts. In order for Eve to have no incentive to choose one noisy encoded

message over the other, both MACs that Eve sees must be statistically identical.

Mathematically this is seen in Eq. 5.16, since U1 + U2 essentially must equal the

same value for both Y n
A and Y n

B (the outputs of each of the MACs that Eve would

see depending on which one she intercepts). This restricts the number of discrete

memoryless sensor networks (DMSNs) that could provide secrecy to a very small

class.

We demonstrate an example using the binary erasure sensor network (BESN).

Let the channel input alphabet be X = {0, 1} for both users, and the channel output

alphabet be Y = {0, 1, 2}. Let the overall channel be given by

YA = XA + XB (5.21)

YB = XA + XB, (5.22)

where XB is the binary complement of XB and addition is the real addition, not

the binary field addition. Fig. 9 depicts the BESN, where the “c” box denotes
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Table III. Input-Output Table for the Binary Erasure Sensor Network

XA XB YA YB

0 0 1 0

0 1 0 1

1 0 2 1

1 1 1 2

the complement.2 For simplicity, we do not include the additional noisy channels

vA(·|·), vB(·|·). Table III shows the input-output relationship of this BESN. Clearly

the base station is able to decode any messages without error since all pairs of (YA, YB)

in Table III are unique; the capacity region for this two-output MAC is described

using R̄1 for Alice’s rate and R̄2 for Bob’s rate. Next, Eve sees either the MAC

of Eq. 5.21 or Eq. 5.22. Both these MACs are statistically identical if we choose

Pr{XA = 0} = Pr{XB = 0} = 1
2
. The capacity region for these one-output MACs is

described using U1 for Alice’s rate and U2 for Bob’s rate. Setting the random variable

J constant, and using the deterministic channels PXA|VA
, PXB |VB

, the capacity regions

for the two-output and one-input MACs can be derived and found to be:

R̄1 ≤ 1 U1 ≤ 1

R̄2 ≤ 1 U2 ≤ 1

R̄1 + R̄2 ≤ 2 U1 + U2 ≤ 3

2
.

Furthermore, by Eq. 5.16 we choose U1 +U2 = 3
2
, then the corresponding inner region

2Without complementation, the two outputs would be identical and thus one copy
would be useless for decoding. This is only the case because the channel is determin-
istic, which is used in this example for simplicity.
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(rates that achieve unconditional secrecy) can be derived using Theorem 7 and found

to be {
(r1, r2) : r1 ≥ 0, r2 ≥ 0, r1 + r2 ≤ 1

2

}
.

For example, to achieve (r1, r2) = (0.5, 0), choose R̄1 = R̄2 = 1 and U1 = 0.5, U2 = 1

r
2

r1

Achievable rate region with zero secrecy

Achievable rate region with perfect secrecy

0.5

1

0.5 1

Fig. 10. Comparison of Achievable Rate Regions

(which satisfies U1 + U2 = 1.5), thus r1 = R̄1 − U1 = 0.5 and r̄2 = R2 − U2 = 0

according to Theorem 7. To achieve (r1, r2) = (0.25, 0.25) (the middle point on the

diagonal of the triangle, see Fig. 10) choose R̄1 = R̄2 = 1 and U1 = U2 = 0.75 (which

satisfies U1+U2 = 1.5), thus r1 = R̄1−U1 = 0.25 and r̄2 = R2−U2 = 0.25 according to

Theorem 7. To conclude this example we contrast the achievable rate regions for the

BESN for no secrecy and perfect secrecy in Fig. 10. Not surprisingly, the achievable

rate region for the perfect secrecy case is a sub-region of that without secrecy. Note

that Fig. 10 is not to be compared with Fig. 6 as the axes are different.
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C. Proofs and Ancillary Results

1. Proof of Theorem 6

The proof makes use of the following lemma.

Lemma 6 (Lemma 4.1 [9]) For arbitrary random variables U, V and sequences of

random variables Y n, Zn the following is true

I(U ; Y n|V ) − I(U ; Zn|V ) =

n∑
i=1

(
I(U ; Yi|Y i−1, Zi+1, . . . , Zn, V )

−I(U ; Zi|Y i−1, Zi+1, . . . , Zn, V )
)

(5.23)

where Y i−1 = (Y1, . . . , Yi−1).

There are a total of four bounds for the sum of the rates. We prove the first of the

two pairs in Theorem 6.

n(R1 + R2) = H(WA, WB) = H(WA, WB|Ỹ n
A , Ỹ n

B ) + I(WA, WB; Ỹ n
A , Ỹ n

B )

(a)
≤ nεn + I(WA, WB; Ỹ n

A , Ỹ n
B )

(b)
= I(WA, WB; Ỹ n

A , Ỹ n
B ) − I(WA, WB; Ỹ n

A ) + I(WA, WB; Ỹ n
A ) + nεn

(c)
≤ I(WA, WB; Ỹ n

A , Ỹ n
B ) − I(WA, WB; Ỹ n

A ) + I(WA, WB; Y n
A ) + nεn

(d)
≤ I(WA, WB; Ỹ n

A , Ỹ n
B ) − I(WA, WB; Ỹ n

A ) + nε + nεn

(e)
=

n∑
i=1

(
I(WA, WB; ỸA,i, ỸB,i|Ỹ i−1

A , Ỹ i−1
B , ỸA,i+1, . . . , ỸA,n)

−I(WA, WB; ỸA,i|Ỹ i−1
A , Ỹ i−1

B , ỸA,i+1, . . . , ỸA,n)
)

+ n(ε + εn)

(f)
= n

n∑
i=1

Pr{Θ = i}
(
I(WA, WB; ỸA,i, ỸB,i|Ki, Θ = i)

−I(WA, WB; ỸA,i|Ki, Θ = i)
)

+ n(ε + εn)
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= n
n∑

i=1

Pr{Θ = i}
(
I(WA, WB; ỸA,Θ, ỸB,Θ|KΘ, Θ = i)

−I(WA, WB; ỸA,Θ|KΘ, Θ = i)
)

+ n(ε + εn)

(g)
= n

(
I(WA, WB; ỸA,Θ, ỸB,Θ|KΘ, Θ) − I(SA, SB; ỸA,Θ|KΘ, Θ)

)
+ n(ε + εn)

(h)
= n

(
I(VA, VB; ỸA, ỸB|J) − I(VA, VB; ỸA|J)

)
+ n(ε + εn) (5.24)

The explanations are as follows: (a) Fano’s inequality from Eq. 5.6; (c) data processing

inequality on the Markov chain (WA, WB) ↔ Y n
A ↔ Ỹ n

A ; (d) unconditional secrecy

requirement if Eve intercepts Y n
A (see Eq. 5.5); (e) use of Lemma 6; (f) by defining

Ki � (Ỹ i−1
A , Ỹ i−1

B , ỸA,i+1, . . . , ỸA,n) (5.25)

and also defining a uniform RV Θ = 1, . . . , n that is independent of all other RVs; (g)

definition of conditioning; (h) by defining

ỸA � ỸA,Θ, ỸB � ỸB,Θ, J � (KΘ, Θ), VA � (WA, J), VB � (WB, J). (5.26)

Finally, it is easily seen that

J ↔ (VA, VB) ↔ (XA, XB) ↔ (ỸA, ỸB) and VA ↔ J ↔ VB (5.27)

form Markov chains where the last chain follows since WA, WB are independent.

On the other hand, adding and subtracting I(WA, WB; ỸB) in (b) instead of

I(WA, WB; ỸA) yields a different bound

R1 + R2 ≤
(
I(VA, VB; ỸA, ỸB|J) − I(VA, VB; ỸB|J)

)
+ ε + εn (5.28)

with the same Markov chains (Eq. 5.27) and the same distribution factorization.
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The other pair in Theorem 6 are derived in a similar manner with slight differ-

ences outlined below.

n(R1 + R2) = H(WA, WB) = H(WA, WB|Y n
A , Y n

B ) + I(WA, WB; Y n
A , Y n

B )

(a)
≤ H(WA, WB|Ỹ n

A , Ỹ n
B ) + I(WA, WB; Y n

A , Y n
B )

(b)
≤ nεn + I(WA, WB; Y n

A , Y n
B )

(c)
= I(WA, WB; Y n

A , Y n
B ) − I(WA, WB; Y n

A ) + I(WA, WB; Y n
A ) + nεn

(d)
≤ I(WA, WB; Y n

A , Y n
B ) − I(WA, WB; Y n

A ) + nε + nεn

(e)
= n

(
I(VA, VB; YA, YB|J) − I(VA, VB; YA|J)

)
+ n(ε + εn) (5.29)

The explanations are as follows: (a) the data processing inequality on the Markov

chain (WA, WB) ↔ (Y n
A , Y n

B ) ↔ (Ỹ n
A , Ỹ n

B ) (b) Fano’s inequality; (d) unconditional

secrecy requirement if Eve intercepts Y n
A ; (e) same approach as in deriving Eq. 5.24,

but now with the following Markov chain

J ↔ (VA, VB) ↔ (XA, XB) ↔ (YA, YB) (5.30)

in place of the first Markov chain in Eq. 5.27.

On the other hand, adding and subtracting I(WA, WB; Y n
B ) in (c) instead of

I(WA, WB; Y n
A ) gives the final bound

R1 + R2 ≤
(
I(VA, VB; YA, YB|J) − I(VA, VB; YB|J)

)
+ ε + εn (5.31)

with the Markov chain in Eq. 5.30 and the same distribution factorization.
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2. Proof of Theorem 7

a. Random Codebook Generation

Randomly generate a typical sequence jn using the distribution
∏n

i=1 PJ(ji) and make

this publically known to all parties including the BS and Eve. Generate 2n(R̄1−δ)

sequences vn
A using the distribution

∏n
i=1 PVA|J(vA,i|ji) and 2n(R̄2−δ) sequences vn

B using

the distribution
∏n

i=1 PVB|J(vB,i|ji) such that Eqs. 5.17 to 5.19 are satisfied.

Alice’s codebook is then the arrangement of the vn
As in a 2�nr1� × 2n(U1−δ) table,

while Bob’s codebook is the arrangement of the vn
Bs in a 2�nr2� × 2n(U2−δ) table such

that Eqs. 5.11 to 5.16 are satisfied (if possible). Suppose Alice’s message wA is indexed

such that wA ∈ {1, . . . , 2�nr1�} and similarly Bob’s message is wB ∈ {1, . . . , 2�nr2�}.
Thus each entry in Alice and Bob’s codebooks can be indexed as vn

A(wA, u1) and

vn
B(wB, u2), respectively. In addition as n → ∞, the actual rates R1, R2 will satisfy

the definitions in Eqs. 5.3 and 5.4.

b. Encoding

Alice encodes her wA by randomly choosing a codeword vn
A from row wA of her

tabular codebook, i.e. randomly (uniformly) selecting a column index u1 resulting

in vn
A(wA, u1). She then randomly generates xn

A (to be sent over the channels) using

the distribution
∏n

i=1 PXA|VA
(xA,i|vA,i). Similarly Bob encodes his wB by randomly

choosing a codeword vn
B from row wB of his tabular codebook, i.e. randomly selecting

a column index u2 resulting in vn
B(wB, u2). He then randomly generates xn

B (to be sent

over the channels) using the distribution
∏n

i=1 PXB |VB
(xB,i|vB,i). Thus the encoders

are both stochastic.
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c. Decoding

Let A
(n)
ε (J, VA, VB, ỸA, ỸB) be the set of jointly typical sequences (Jn, V n

A , V n
B , Ỹ n

A , Ỹ n
B )

[100]. Upon receiving (ỹn
A, ỹn

B) the base station decoder declares the messages (ŵA, ŵB)

as having been sent if

(jn, vn
A(ŵA, u1)), v

n
B(ŵB, u2), ỹ

n
A, ỹn

B) ∈ A(n)
ε (J, VA, VB, ỸA, ỸB)

for any (u1, u2) if such a (ŵA, ŵB) exists and is unique.

d. Probability of Error Analysis

Define the event

Ea,b � {(jn, vn
A(a, u1)), v

n
B(b, u2), ỹ

n
A, ỹn

B) ∈ A(n)
ε (J, VA, VB, ỸA, ỸB)}. (5.32)

By the symmetry of the codebook construction we can assume without loss of gener-

ality that the messages (wA, wB) = (1, 1) were sent. Thus

P (n)
e = Pr{ error |(wA, wB) = (1, 1)}

= Pr


Ec

1,1 ∪
⋃

a�=1,u1

Ea,1 ∪
⋃

b�=1,u2

E1,b ∪
⋃

a �=1,b�=1
u1,u2

Ea,b




≤ Pr{Ec
1,1|(wA, wB) = (1, 1)} +

∑
a�=1

∑
u1

Pr{Ea,1|(wA, wB) = (1, 1)}

+
∑
b�=1

∑
u2

Pr{E1,b|(wA, wB) = (1, 1)}

+
∑
a�=1

∑
b�=1

∑
u1

∑
u2

Pr{Ea,b|(wA, wB) = (1, 1)} (5.33)
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by the union bound. The first term tends to 0 as n → ∞ by the asymptotic equipar-

tition theorem (AEP) [100].

Pr{Ea�=1,1|(wA, wB) = (1, 1)}

=
∑

(jn,vn
A

,vn
B

,ỹn
A

,ỹn
B

)

∈A
(n)
ε (J,VA,VB,ỸA,ỸB)

P n
J (jn)PVA|J(vn

A|jn)P n
VB,ỸA,ỸB|J(vn

B, ỹn
A, ỹn

B|jn)

≤
∣∣∣A(n)

ε (J, VA, VB, ỸA, ỸB)
∣∣∣ 2−n(H(J)−δ)2−n(H(VA|J)−δ)2−n(H(VB ,ỸA,ỸB|J)−δ)

≤ 2−n(I(VA;ỸA|VB,J)−δ′) (5.34)

Using the AEP, the other probabilities are

Pr{E1,b�=1|(wA, wB) = (1, 1)} ≤ 2−n(I(VB ;ỸB |VA,J)−δ′) (5.35)

Pr{Ea�=1,b�=1|(wA, wB) = (1, 1)} ≤ 2−n(I(VA,VB;ỸA,ỸB|J)−δ′) (5.36)

thus recalling the size and dimensions of the codebooks yields

P (n)
e ≤ δ + 2n(R̄1−δ)2−n(I(VA;ỸA|VB ,J)−δ′) + 2n(R̄2−δ)2−n(I(VB ;ỸB|VA,J)−δ′)

+2n(R̄1+R̄2−δ)2−n(I(VA,VB;ỸA,ỸB|J)−δ′). (5.37)

Therefore if Eqs. 5.17 to 5.19 are satisfied then the bound in Eq. 5.37 approaches 0

as n → ∞.
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e. Secrecy Analysis

H(WA, WB|Y n
i ) ≥ H(WA, WB|Y n

i , Jn) = H(WA, WB, Y n
i |Jn) − H(Y n

i |Jn)

= H(WA, WB, V n
A , V n

B , Y n
i |Jn) − H(V n

A , V n
B |WA, WB, Y n

i , Jn) − H(Y n
i |Jn)

= H(WA, WB, V n
A , V n

B |Jn) + H(Y n
i |WA, WB, V n

A , V n
B , Jn)

−H(V n
A , V n

B |WA, WB, Y n
i , Jn) − H(Y n

i |Jn)

(a)
≥ H(V n

A , V n
B |Jn) + H(Y n

i |V n
A , V n

B , Jn) − H(V n
A , V n

B |WA, WB, Y n
i , Jn) − H(Y n

i |Jn)

(b)
= H(V n

A |Jn) + H(V n
B |Jn) − I(Y n

i ; V n
A , V n

B |Jn) − H(V n
A , V n

B |WA, WB, Y n
i , Jn)

(c)
= n(R̄1 + R̄2 − 2δ) − I(Y n

i ; V n
A , V n

B |Jn) − H(V n
A , V n

B |WA, WB, Y n
i , Jn)

(d)
≥ n(r1 + r2 − 2δ − ε) − H(V n

A , V n
B |WA, WB, Y n

i , Jn)

(e)
≥ n(R1 + R2 − ε′) − H(V n

A , V n
B |WA, WB, Y n

i , Jn)

(f)
≥ n(R1 + R2 − ε′) − nεn (5.38)

where (a) the first term results from H(WA, WB, V n
A , V n

B |Jn) ≥ H(V n
A , V n

B |Jn) (prop-

erty of entropy) and the second term from the encoding process, i.e. knowledge of V n
A

implies knowledge of WA, and similarly knowledge of V n
B implies knowledge of WB;

(b) since H(V n
A , V n

B |Jn) = H(V n
A |Jn) + H(V n

B |V n
A , Jn) and V n

A ↔ Jn ↔ V n
B forms a

Markov chain from the codebook generation; (c) from the codebook generation; (d)

since U1 + U2 ≥ I(VA, VB; Y n
i |Jn) is true from Eq. 5.16, and using the definitions of

r1 and r2 from Eqs. 5.11 and 5.12 yields R̄1 − r1 + R̄2 − r2 ≥ I(VA, VB; Y n
i |Jn)− ε; (e)

from the floor operation in the codebook generation; (f) when Eve is given WA and

WB, she has knowledge of the rows of the codebooks in which the codewords V n
A and

V n
B were randomly chosen in the encoding processing. This reduces the codebooks in

which she must search (using joint typical decoding with her eavesdropped Y n
i ) from

the two codebooks in its entirety to just one row of each codebook. Using the same
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technique as in Section V-C-2-d, it can be shown that Eve’s average probability of

error (which we denote by P
(n)′
e ) is also bounded by quantities that vanish to 0 as

n → ∞ based on the random codebook generation if the upper bounds in Eqs. 5.14

to 5.16 are satisfied. Therefore by Fano’s inequality

H(V n
A , V n

B |WA, WB, Y n
i , Jn) ≤ 1 + P (n)′

e log2(|WA||WB|) � nεn. (5.39)

D. Summary of Results

In this chapter we studied the channel coding and secrecy tradeoffs for the sensor

network model of Fig. 8. This model differs from those in the previous chapters

in that intermediate mobile relay nodes are assumed to be situated near the data

gathering nodes such that these mobile nodes receive interfering signals. Surprisingly,

we showed that with the aid of interference, unconditional secrecy is now possible for

certain cases. Specifically, we derived inner and outer regions for the capacity region.

Our inner region is for the specific case when all of the eavesdropper’s channels are

“statistically similar;” hence intuitively the eavesdropper has no incentive in choosing

one channel over the other. For the general discrete memoryless channel, pre-coding

is required to maximize the users’ rates. We demonstrated an example of a binary

erasure sensor network showing that our results are not simply mathematical tricks.
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CHAPTER VI

GAUSSIAN INTERFERENCE CHANNEL WITH SLOW AND FLAT RAYLEIGH

FADING AND DISTRIBUTED SECRECY

This chapter is an extension of Chapter V from the discrete memoryless channels

to channels suitable for wireless communications. In particular we assume that the

interference channel has additive white Gaussian noise, and later augment this model

with the additional challenge of slow and flat Rayleigh fading. Again we derive inner

and outer regions of the secrecy capacity region for the non-fading case. Significantly

we show that the special inner region can be simplified to such an extent that its

description is merely a single region based on an optimal power allocation scheme

without the need for pre-coding (as was the case in Chapter V). This is in contrast

to various mutli-user wiretap channel capacity regions, which are usually constructed

through a convex hull of an infinite union of regions. Next, our extension of the

interference channel to slow and flat Rayleigh fading demonstrates that interference

and random fading are not only friends rather than foes, but are in fact necessary

enablers of unconditional secrecy.

A. System Model

For simplicity we formulate the problem for two nodes. Fig. 11 illustrates the wireless

channel with interference. The noise vectors Zn
1 , Zn

2 are independent, and each com-

ponent in the vector is an independent and identically distributed (i.i.d.) Gaussian

random variable (RV), i.e. Zn
i = (Zi,1, Zi,2, . . . , Zi,n) with each Zi,j independent and
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Ŵ2

Choose one

Yi
n

i = 1 or 2

h1

h12

h21

h2

Fig. 11. Two-User Wireless Sensor Network with Eavesdropper

normally distributed, N (0, σ2
i ), for i = 1, 2. The outputs of the channel are given by

Y n
1 = h1X

n
1 + h21X

n
2 + Zn

1 (6.1)

Y n
2 = h12X

n
1 + h2X

n
2 + Zn

2 . (6.2)

The multiplicative terms h1, h2, h12, h21 model the gains on the channels. For the first

part of our results, we will assume that these are constants, and for the second part

we derive a random fading model. More details on this second part will be provided

in the subsequent treatment. The channels corresponding to h12, h21 model the inter-

ference and we also call these cross-links. Thus the channel transition probability is

factored as p(y1, y2|x1, x2) = p(y1|x1, x2)p(y2|x1, x2). Furthermore we impose a power
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constraint on the transmitters

1

n
E‖Xn

i ‖2 ≤ Pmax
i (6.3)

for i = 1, 2, where each transmitter has its own maximum allowable power given by

P max
1 , Pmax

2 .

Note that our overall setup is different from [40], [39] in that: (1) there are no

fixed wiretap channels, i.e. the eavesdropper can choose either Y n
1 or Y n

2 (but not

both), where Y n
1 and Y n

2 are outputs of legitimate channels, and (2) the decoder (base

station) receives and uses both Y n
1 and Y n

2 for decoding.

Definition 4 A (2nR1 , 2nR2, n) code for the wireless sensor network depicted in Fig. 11

consists of two message sets Wi = {1, . . . , 2nRi} for i = 1, 2 such that Wi is uniformly

selected from the set Wi, two (stochastic) encoding functions fi : Wi → X n
i for

i = 1, 2, and one decoding function g : Yn
1 × Yn

2 → W1 × W2. Thus the encoding

distribution is factored as p(x1, x2|w1, w2) = p(x1|w1)p(x2|w2).

Let the average probability of error for the (2nR1 , 2nR2, n) be defined by

P (n)
e =

1

2n(R1+R2)
·

∑
(w1,w2)∈
W1×W2

Pr{(Ŵ1, Ŵ2) �= (w1, w2)|(w1, w2) sent}. (6.4)

Let secrecy (or confidentiality) be measured by Shannon equivocation or equivalently

mutual information, e.g. H(W1, W2|Y n
i ) or I(W1, W2; Y

n
i ) for either i = 1 or i = 2

depending on which Y n
i the eavesdropper selects. Note that the eavesdropper is only

permitted to select one out of the two channel outputs.

Definition 5 A rate pair (R1, R2) is achievable with unconditional secrecy for the

wireless sensor network if there exists a sequence of (2nR1, 2nR2, n) codes such that for
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all ε > 0

P (n)
e < ε (6.5)

1

n
I(W1, W2; Y

n
i ) < ε

1

n
I(W1; Y

n
i ) < ε

1

n
I(W2; Y

n
i ) < ε (6.6)

for i = 1, 2, for n sufficiently large.

The secrecy capacity region is defined as the closure of the set of all (R1, R2) achievable

with unconditional secrecy, denoted by C. We will derive outer and inner regions,

Couter and Cinner, respectively, such that

Cinner ⊆ C ⊆ Couter.

B. Main Results

1. General Outer Region

We now state the general outer region result. Let C(x) = 1
2
log2(1 + x).

Theorem 8 (Outer Region) Let Couter(P1, P2) be the set of (R1, R2) such that

R1 + R2 ≤ 1

2
log2

(
K12

σ2
1σ

2
2

)
− max {C(SNR1), C(SNR2)} (6.7)

where

K12 = det


h2

1P1 + h2
21P2 + σ2

1 h1h12P1 + h2h21P2

h1h12P1 + h2h21P2 h2
12P1 + h2

2P2 + σ2
2


 (6.8)

SNR1 =
h2

1P1 + h2
21P2

σ2
1

(6.9)

SNR2 =
h2

12P1 + h2
2P2

σ2
2

. (6.10)
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Then

Couter = Couter(Pmax
1 , Pmax

2 )

is an outer region.

2. Equal SNR Inner Region

In this section we derive an inner region that is based on Gaussian codebooks and

the equal SNR property:

SNR1 = SNR2 � SNREq. (6.11)

This equal SNR property restricts the users’ powers to lie on a line segment deter-

mined by the channel parameters , i.e.

α =
h2

2σ
2
1 − h2

21σ
2
2

h2
1σ

2
2 − h2

12σ
2
1

(6.12)

γ1 =




σ2
2h2

21

h2
1h2

2
− σ2

1

h2
1

if
h2
21

h2
2

>
σ2
1

σ2
2

and
h2
12

h2
1

>
σ2
2

σ2
1
,

σ2
1h2

2

h2
12h2

21
− σ2

2

h2
12

if
h2
21

h2
2

<
σ2
1

σ2
2

and
h2
12

h2
1

<
σ2
2

σ2
1
,

∞ otherwise.

(6.13)

γ2 =




σ2
1h2

12

h2
1h2

2
− σ2

2

h2
2

if
h2
21

h2
2

>
σ2
1

σ2
2

and
h2
12

h2
1

>
σ2
2

σ2
1
,

σ2
2h2

1

h2
12h2

21
− σ2

1

h2
21

if
h2
21

h2
2

<
σ2
1

σ2
2

and
h2
12

h2
1

<
σ2
2

σ2
1
,

∞ otherwise.

(6.14)

A = {(P1, P2) : γ1 ≤ P1 ≤ Pmax
1 , γ2 ≤ P2 ≤ Pmax

2 , P1 = αP2, α > 0}, (6.15)

where A is the set of admissible users’ powers. In particular, we will show that if

the power assignments in Table IV are in A, then they are optimal, otherwise no

admissible power assignments exist.
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Table IV. Optimal Power Allocation

Pmax
2 > Pmax

1 0 < α < 1 α > 1

αPmax
2 > Pmax

1 P1 = Pmax
1

P2 = Pmax
1 /α P1 = Pmax

1

αPmax
2 < Pmax

1 P1 = αPmax
2 P2 = Pmax

1 /α

P2 = Pmax
2

Pmax
2 < Pmax

1 0 < α < 1 α > 1

αPmax
2 > Pmax

1 P1 = Pmax
1

P1 = αPmax
2 P2 = Pmax

1 /α

αPmax
2 < Pmax

1 P2 = Pmax
2 P1 = αPmax

2

P2 = Pmax
2

The inner region is based on two linear programs (LPs). Towards this end, define

b(P1, P2) =




min
{

C
(

h2
1P1

σ2
1

)
, C

(
h2
12P1

σ2
2

)}
min

{
C

(
h2
2P2

σ2
2

)
, C

(
h2
21P2

σ2
1

)}
C

(
h2
12P1

σ2
2

+
h2
1P1

σ2
1

)
C

(
h2
21P2

σ2
1

+
h2
2P2

σ2
2

)
1
2
log2

(
K12

σ2
1σ2

2

)
0




(6.16)

where (P1, P2) ∈ A. The inequality symbol � below applies the inequality ≤ between

corresponding components of the vectors.
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a. Linear Program 1

minimize

(
1 0 −1 0

) (
U

(1)
1 U

(1)
2 R̄

(1)
1 R̄

(1)
2

)T

subject to 


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 1 1

0 1 0 −1







U
(1)
1

U
(1)
2

R̄
(1)
1

R̄
(1)
2




� b (6.17)

(
1 1 0 0

) (
U

(1)
1 U

(1)
2 R̄

(1)
1 R̄

(1)
2

)T

= C (SNREq) (6.18)

b. Linear Program 2

minimize

(
0 1 0 −1

) (
U

(2)
1 U

(2)
2 R̄

(2)
1 R̄

(2)
2

)T

subject to 


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 1 1

1 0 −1 0







U
(2)
1

U
(2)
2

R̄
(2)
1

R̄
(2)
2




� b (6.19)

(
1 1 0 0

) (
U

(2)
1 U

(2)
2 R̄

(2)
1 R̄

(2)
2

)T

= C (SNREq) (6.20)

If A �= ∅, then let Cinner(P1, P2) for (P1, P2) ∈ A be the set of rate pairs (R1, R2)
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defined by the convex hull of the following points

{
(0, 0), (0, R

(2)∗
2 ), (R

(1)∗
1 , 0), (R

(1)∗
1 , R′

2), (R
′
1, R

(2)∗
2 )

}
.

such that (U
(1)∗
1 , U

(1)∗
2 , R̄

(1)∗
1 , R̄

(1)∗
2 ) and (U

(2)∗
1 , U

(2)∗
2 , R̄

(2)∗
1 , R̄

(2)∗
2 ) are optimal points

for LPs 1 and 2 with b = b(P1, P2), respectively, i.e. points that achieve the optimal

values for the LPs with (P1, P2) ∈ A, and

R′
2 = min

{
1

2
log2

(
K12

σ2
1σ

2
2

)
− R̄

(1)∗
1 , C

(
h2

21P2

σ2
1

+
h2

2P2

σ2
2

) }
− U

(1)∗
2

R′
1 = min

{
1

2
log2

(
K12

σ2
1σ

2
2

)
− R̄

(2)∗
2 , C

(
h2

21P2

σ2
1

+
h2

2P2

σ2
2

) }
− U

(2)∗
1 .

We will show in the proof of the upcoming theorem that when A �= ∅, the LPs are

always feasible.

Theorem 9 Cinner(P1, P2) ⊆ C, for all (P1, P2) ∈ A �= ∅, i.e. any rate pair (R1, R2) ∈
Cinner(P1, P2) is achievable. If (P1, P2) is obtained from the power allocation in Ta-

ble IV, then C inner(P1, P2) is the largest inner region that contains all other inner

regions.

Note that if A = ∅, then our convention is to let Cinner(P1, P2) = ∅, and thus ∅ ⊆ C
is still true. An important result from Theorem 9 is that the largest inner region is

described simply as the convex hull of a few points, rather than the convex hull of an

(infinite) union of sets.

We now list an important tightness property that is immediate from the deriva-

tion of the inner region.
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Corollary 1 (Tightness)

R
(1)∗
1 + R′

2 =
1

2
log2

(
K12

σ2
1σ

2
2

)
− C (SNREq) (6.21)

R′
1 + R

(2)∗
2 =

1

2
log2

(
K12

σ2
1σ

2
2

)
− C (SNREq) (6.22)

Corollary 1 along with Theorem 9 shows that the largest inner region partially co-

incides with the outer region (see Theorem 8) when (P max
1 , Pmax

2 ) ∈ A. This result

states that under the equal SNR regime when the power constraint is admissible , the

outer region is partially tight, and so Gaussian codebooks may be close to optimal

for this inner region. This point will be illustrated in an example in Section VI-C-1.

We will see in that example that finding the inner region does not require the use

of linear programming. However the linear programming formulation gives us some

convenience in notation, and also we shall see it used informally to give insights on

one of the proofs.

3. Slow and Flat Rayleigh Fading

In this section we model the random fading as in [45], [82], [47], [48]. We consider

the complex discrete-time base-band channel model, i.e. we assume that X1, X2 are

complex-valued, that the additive noise variables are zero-mean circularly symmetric

Gaussian, and the presence of a slowly and flat fading channel such that h1,h2,h12,h21

(where now bold font signifies that the variables are random, not vectors) are indepen-

dent circularly symmetric Gaussian random variables. Their realizations are constant

for an entire codeword block (slow fading) and known by all parties (coherent).1 Then

|h1|2, |h2|2, |h12|2, |h21|2 are exponentially-distributed with means β1, β2, β12, β21, re-

1The capacity will be doubled to account for the real and imaginary parts as
in [45], [82], [47], [48].
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spectively. We denote the powers of the noise for the two users by N1 and N2. In the

works of [45], [82], [47], [48], the outage probability, defined as the probability that a

target rate is unachievable, is of interest. In our work, we are interested in a simpler

problem: the probability that it is impossible to achieve any non-zero rate given some

power constraint. This is the same as Pr{A = ∅}. We will derive this probability,

and plot it for varying parameters.

Define the following variables:

SNR11 � β1P
max
1

N1

, SNR22 � β2P
max
2

N2

,

SNR12 � β12P
max
1

N2

, SNR21 � β21P
max
2

N1

, (6.23)

which can be interpreted as the single-user expected signal-to-noise (SNR) ratio, and

DCR � β1β2

β12β21
, CDR � β12β21

β1β2
, (6.24)

which we define as the direct-to-cross-expected-fading-ratio (DCR) and the cross-to-

direct-expected-fading-ratio (CDR), respectively; essentially these two ratios measure

how different the expected fading is on the direct links and on the cross-links. Finally

define

ξ =
(β12N1 + β1N2)(β2N1 + β21N2)

β1β2β12β21N1N2
, (6.25)

as a constant independent of P max
1 , Pmax

2 . Equipped with these definitions, the prob-
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ability of not achieving a non-zero rate is given by

Pr{A = ∅} = 1 − Pr{A �= ∅}

= 1 − (β1β2 + β12β21)N1N2

(β12N1 + β1N2)(β2N1 + β21N2)

+ DCR · SNR−1
11 · E(ξ · SNR−1

11 )

+ DCR · SNR−1
22 · E(ξ · SNR−1

22 )

+ CDR · SNR−1
12 · E(ξ · SNR−1

12 )

+ CDR · SNR−1
21 · E(ξ · SNR−1

21 )

− DCR

SNR11 + SNR22
· E

(
ξ

β1β2

SNR11 + SNR22

)

− CDR

SNR12 + SNR21
· E

(
ξ

β12β21

SNR12 + SNR21

)
, (6.26)

where

E(x) = exp(x)E1(x), E1(x) =

∫ ∞

x

1

t
exp(−t)dt (6.27)

and E1(x) is known as the exponential integral, which is common in the secrecy

capacity of fading channels [47].

C. Interpretation, Numerical Example, and Discussion

Another way to view our problem is to consider p(y|x) with y = (y1, y2), x = (x1, x2)

as the main (legitimate) “single-user” channel to the base station. The wiretap chan-

nel can be viewed as p′(ỹ|y), where ỹ is either y1 or y2. In this way, the wiretap

channel is degraded, and by the Gaussian wiretap channel theorem [21], the secrecy
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capacity for this “single-user” channel is given by

CS = CM − CMW

= I(X; Y ) − I(X; Ỹ )

= I(X1, X2; Y1, Y2) − I(X1, X2, Yi), i = 1 or 2

which is precisely the upper bound in Theorem 8 for the Gaussian codebook. When

applied to two users, it turns out that the users can time-share this CS but cannot

get a better rate than time-sharing CS. Thus this interpretation gives insight into

the outer bound.

Next we point out what it means to achieve one of the corner points, i.e. (R1, R2) =

(R1, 0) and (R1, R2) = (0, R2). When one user has rate 0, that user is effectively jam-

ming the eavesdropper’s channel to the benefit of the legitimate sensor network, which

has been studied in [40] under a different wiretap channel model.

1. Numerical Example for Inner Region

Next we give a numerical example that does not require linear programming. Recall

that we introduced linear programming to aid many of the proofs and insights in this

chapter. Once the theorems have been established, the derivation of the inner region

does not require linear programming as we now show. Let h2
1 = 1, h2

12 = 1/0.91, h2
21 =

0.6, h2
2 = 1, σ2

1 = 0.9, σ2
2 = 1, Pmax

1 = 13.65, Pmax
2 = 0.5 for our example. We have

chosen the maximum powers such that they already satisfy P max
1 = αPmax

2 (where α

is given by Eq. 6.12), and so we may allocate the maximum powers and not worry

about using Table IV. In Fig. 12 we have the R̄ region bounded by the blue lines,

and the U region given by the thicker red line (see Eqs. 6.45 and 6.46 for definition).

The reader may verify that R
(1)∗
1 (i.e. the maximum rate for User 1) can be acquired
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a

b

0.4372

0.2075

1.8147 2

2.0688 2.2985

0.0222

User 1

User 2

Fig. 12. Example Illustrating Inner Region Calculations without Linear Programming

by choosing the two black circles on the R̄ and U regions, and that R
(1)∗
1 is then

given by the distance marked a in Fig. 12; the R′
2 corresponding to R

(1)∗
1 is then the

distance marked b in Fig. 12. Thus (R
(1)∗
1 , R′

2) = (0.415, 0.0688). Next the reader may

verify that R
(2)∗
2 (i.e. the maximum rate for User 2) can be acquired by choosing the

two green circles on the R̄ and U regions, and that R
(2)∗
2 is then given by the green

distance in Fig. 12; the reader may also verify that there is no way to choose two

green circles to yield a maximum rate for User 2, while still having a non-zero rate

for User 1. Therefore the corresponding R′
1 = 0. Thus (R′

1, R
(2)∗
2 ) = (0, 0.4838). Note

that both rate pairs sum to 0.4838, which is also the boundary of the outer region.

Given the points derived above, the inner region is then given in Fig. 13 as the

shaded gray region. The thicker red diagonal line denotes the boundary of the outer

region. It can be seen that the inner region for the equal SNR assumption is partially
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R1

R2

( 0.415, 0.0688 )

( 0, 0.4838 )

( 0.415, 0 )

Gap

Fig. 13. Inner Region of Example

tight to the outer region. There is however a gap at the top.

In this example we chose parameters that satisfied the equal SNR assumption.

It is easy to choose parameters that do not satisfy the equal SNR assumption. This

observation motivates the next part, which deals with random fading.

2. Discussion on Random Fading

We pointed out that some parameters may not satisfy the equal SNR assumption, and

thus coding using the equal SNR assumption cannot be used. If these parameters are

fixed, then there is nothing we can do, i.e. the users cannot send messages in secrecy.

However, this motivates the idea of random fading, which opens up the possibility

that some realizations are amenable to the equal SNR assumption. Thus random

fading is a friend rather than a foe as we further detail.



93

10
0

10
1

10
2

10
−0.3

10
−0.2

10
−0.1

P
1
max = P

2
max

P
ro

ba
bi

lit
y 

of
 Z

er
o 

R
at

e

Fig. 14. Solid Lines: Probability That Users Cannot Achieve a Non-Zero Rate

Given Maximal Power Constraints; Dotted Lines: When P max
1 , Pmax

2 → ∞
(Black: β1 = β2 = β12 = β21 = N1 = N2 = 1, Blue:

β1 = 1, β2 = 0.5, β12 = 0.9, β21 = 0.1, N1 = 1, N2 = 2, Green:

β1 = 1, β2 = 0.5, β12 = 0.2, β21 = 0.8, N1 = 1, N2 = 2, Red:

β1 = 1, β2 = 0.3, β12 = 0.7, β21 = 0.1, N1 = 2, N2 = 1)

Fig. 14 plots the derived Pr{A = ∅} for different channel parameters. There are

three regions of interest that we will study: (1) P max
1 , Pmax

2 → 0; (2) Pmax
1 , Pmax

2 → ∞;

(3) powers in between (1) and (2). The first two regions of interest are obvious and

can be deduced simply from Eq. 6.59: when P max
1 = Pmax

2 = 0, the events never

occur, and thus Pr{A = ∅} = 1−Pr{A �= ∅} = 1 as verified in Fig. 14; on the other

hand when P max
1 , Pmax

2 → ∞, it is easy to see that the only random event left would
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be {α > 0}, which is independent of P max
1 , Pmax

2 , and thus

Pr{A = ∅} → 1 − (β1β2 + β12β21)N1N2

(β12N1 + β1N2)(β2N1 + β21N2)
. (6.28)

With sufficiently large maximum allowable power, the probability of not achieving a

non-zero rate is bounded by Eq. 6.28, which is depicted by the dotted lines in Fig. 14.

The third case is the most interesting case. From Fig. 14 we see that when

Pmax
1 , Pmax

2 is finite, the solid black curve performs better than the solid blue curve.

However, in the infinite power region, the reverse is true: the dotted blue line performs

better than the dotted black curve. In fact from Fig. 14, one can see the solid blue and

black curves may intercept and cross over at some point. Eq. 6.26 is used informally

for our interpretation of this third case. First, it is desirable to decrease the positive

terms in Eq. 6.26. The positive terms may be decreased by increasing SNRij , since

1
x
E(x) is a decreasing function. For example, in the term

DCR · SNR−1
11 · E(ξ · SNR−1

11 )

if SNR11 is increased, this term decreases. If the maximum powers P max
1 , Pmax

2 , are

held constant, SNR11 may be increased by increasing β1. The entire term may be

further decreased if the denominator of DCR, β12β21, is increased. Thus we see that

both β1 (direct link) and β12β21 (cross-links) are increased together to decrease the

above term. Similarly this argument can be applied to the other three positive terms

in Eq. 6.26. This informally suggests that the expected fadings should approximately

be equal to one another. Indeed, the black curve in Fig. 14 has the best performance

in the finite power regime and it corresponds to the case when all parameters are

equal.
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D. Proofs and Ancillary Results

1. Proof of Theorem 8: Outer Region

We shall prove that with a fixed transmit power of (P1, P2), the rate pair (R1, R2) ∈
Couter(P1, P2) is necessary. The derivation for the sum rate bound follows.

n(R1 + R2) = H(W1, W2) = H(W1, W2|Y n
1 , Y n

2 ) + I(W1, W2; Y
n
1 , Y n

2 )

(a)
≤ nεn + I(W1, W2; Y

n
1 , Y n

2 )

(b)
= I(W1, W2; Y

n
2 ) + I(W1, W2; Y

n
1 |Y n

2 ) + nεn

(c)
≤ nε + I(W1, W2; Y

n
1 |Y n

2 ) + nεn

(d)
≤ H(Y n

1 |Y n
2 ) − H(Y n

1 |Y n
2 , W1, W2, X

n
1 , Xn

2 ) + 2nεn

(e)
≤ H(Y n

1 |Y n
2 ) − H(Y n

1 |Y n
2 , Xn

1 , Xn
2 ) + 2nεn

= I(Xn
1 , Xn

2 ; Y n
1 |Y n

2 ) + 2nεn (6.29)

The explanations are: (a) Fano’s inequality; (c) the unconditional secrecy requirement

of Eq. 6.6; (d) conditioning reduces entropy; (e) the data processing inequality on the

Markov chain (W1, W2) ↔ (Xn
1 , Xn

2 ) ↔ (Y n
1 , Y n

2 ). On the other hand, using the chain

rule in (b) another way, gives another bound

n(R1 + R2) ≤ I(W1, W2; Y
n
1 ) + I(W1, W2; Y

n
2 |Y n

1 ) + nεn

and using Eq. 6.6, and then (c) − (e) again gives the other bound

n(R1 + R2) ≤ I(Xn
1 , Xn

2 ; Y n
2 |Y n

1 ) + 2nεn. (6.30)

To satisfy both bounds, we take the minimum of the two. Now we shall work with

Eq. 6.29, and the same approach follows for Eq. 6.30. For now let Xn
1 , Xn

2 be Gaussian

vectors such that their components are i.i.d., and let entropy and mutual information
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be differential. Fixing a pair of transmit powers (P1, P2) we have

I(Xn
1 , Xn

2 ; Y n
1 |Y n

2 ) = I(Xn
1 , Xn

2 ; Y n
1 , Y n

2 ) − I(Xn
1 , Xn

2 ; Y n
2 )

=
n

2
log2

(
K12

σ2
1σ

2
2

)
− nC(SNR2) (6.31)

as the reader may verify. Next we bound the individual rates.

nR1 = H(W1) = H(W1|Y n
1 Y n

2 ) + I(W1; Y
n
1 , Y n

2 )

(a)
≤ nεn + I(W1; Y

n
1 , Y n

2 )

(b)
= I(W1; Y

n
2 ) + I(W1; Y

n
1 |Y n

2 ) + nεn

(c)
≤ nε + I(W1; Y

n
1 |Y n

2 ) + nεn

(d)
≤ H(Y n

1 |Y n
2 ) − H(Y n

1 |Y n
2 , W1, X

n
1 , Xn

2 ) + 2nεn

(e)
= H(Y n

1 |Y n
2 ) − H(Y n

1 |Y n
2 , Xn

1 , Xn
2 ) + 2nεn

= I(Xn
1 , Xn

2 ; Y n
1 |Y n

2 ) + 2nεn (6.32)

The explanations are the same as before. The chain rule of (b) can also be written in

another way. Thus the individual bounds are the same as the sum rate bound.

Finally we prove that Xn
1 , Xn

2 maximizes Eq. 6.31 when they are chosen as vectors

of i.i.d. Gaussian RVs. The proof follows easily from the clever device used in [57],

and we include it here for completeness.

I(Xn
1 , Xn

2 ; Y n
1 |Y n

2 ) = H(Y n
1 |Y n

2 ) − H(Y n
1 |Y n

2 , Xn
1 , Xn

2 )

= H(Y n
1 |Y n

2 ) − H(Zn
1 |Zn

2 ) (6.33)

Thus maximizing I(Xn
1 , Xn

2 ; Y n
1 |Y n

2 ) over Xn
1 , Xn

2 is equivalent to maximizing H(Y n
1 |Y n

2 )

over Xn
1 , Xn

2 , since Zn
1 , Zn

2 are independent of Xn
1 , Xn

2 . Let L be a matrix such that

LY n
2 yields a vector in which each component in this vector is the best linear minimum

mean square error (LMMSE) estimate of the corresponding component in vector Y n
1 .
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Formally, let

L �




L1

...

Ln


 (6.34)

where Li a row vectors, and LiY
n
2 is the best LMMSE of Y1,i. Then let the matrix

M be the diagonal matrix in which the diagonal entries are the corresponding mean

square estimation error. The following are information theoretic bounds.

H(Y n
1 |Y n

2 ) (a)
= H(Y n

1 − LY n
2 |Y n

2 )

(b)
≤ H(Y n

1 − LY n
2 )

(c)
≤

1

2
log(2πe)n detM. (6.35)

The explanations follow: (a) follows since conditioning on Y n
2 makes LY n

2 a constant;

(b) conditioning reduces entropy; (c) the maximum entropy of random vector Y n
1 −

LY n
2 given a covariance matrix detM is given by the expression of (c) [100]. To show

that Xn
1 , Xn

2 achieves the maximum of Eq. 6.35, we show that the inequalities (b) and

(c) are tight when Xn
1 , Xn

2 are the said Gaussian vectors.

From the orthogonality principle for the best LMMSE [101], E{[(Y n
1 −LY n

2 )]iY2,j} =

0 for each component i, j of the vectors. If Xn
1 , Xn

2 are Gaussian then the individual

errors [(Y n
1 −LY n

2 )]i are also independent of Y2,i, thus proving Y n
1 −LY n

2 is indepen-

dent of Y2. Finally (c) is also tight since Y n
1 −LY n

2 is a Gaussian random vector when

Xn
1 , Xn

2 are Gaussian, which maximizes entropy for a covariance constraint.

2. Proof of Theorem 9: Inner Region

The proof of Theorem 9 consists of four parts. The first part is an unsimplified inner

region (stated in Lemma 7 below) whose proof is similar (but with some differences)

to the DMIC proof in Chapter V, which involves the convex hull of an infinite union
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of regions. For completeness, the proof of Lemma 7 is included in Appendix A. The

other three parts of the proof of Theorem 9 are entirely new to this chapter. The

second part is the characterization of Lemma 7 via linear programming, i.e. the

two LPs given in Section VI-B-2. The third part is to prove that increasing power

implies increasing the inner region such that for P1 ≤ Q1, P2 ≤ Q2, (P1, P2) ∈ A,

(Q1, Q2) ∈ A implies C inner(P1, P2) ⊆ C inner(Q1, Q2). This means that if we utilize

the maximum admissible power, the resulting inner region is the largest inner region

that is also a superset of all other inner regions. Finally the fourth part is to prove

that Table IV provides the maximum admissible power. Towards this end, we divide

the proof of Theorem 9 into its corresponding four sections.

a. Part 1: Gaussian Codebook and Corollary 1

The first part of the proof follows. Let |x|+ = max{x, 0}. Let the notation x � a

denote a − ε ≤ x ≤ a for ε > 0 arbitrarily small. Recall that we only consider

constructing achievable codes for the equal SNR case, i.e. SNR1 = SNR2, under

Gaussian codebooks.

Lemma 7 Let Cinner(P1, P2) be the set of (R1, R2) such that

SNR1 = SNR2 � SNREq (6.36)

R1 =
∣∣R̄1 − U1

∣∣+ (6.37)

R2 =
∣∣R̄2 − U2

∣∣+ (6.38)
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where

U1 ≤ min

{
C

(
h2

1P1

σ2
1

)
, C

(
h2

12P1

σ2
2

)}
(6.39)

U2 ≤ min

{
C

(
h2

2P2

σ2
2

)
, C

(
h2

21P2

σ2
1

)}
(6.40)

U1 + U2 � C (SNREq) (6.41)

R̄1 ≤ C

(
h2

12P1

σ2
2

+
h2

1P1

σ2
1

)
(6.42)

R̄2 ≤ C

(
h2

21P2

σ2
1

+
h2

2P2

σ2
2

)
(6.43)

R̄1 + R̄2 ≤ 1

2
log2

(
K12

σ2
1σ

2
2

)
. (6.44)

Then Cinner is the closure of the convex hull of

⋃
(P1,P2)∈A

Cinner(P1, P2)

where A is given by Eq. 6.15.

The proof of Lemma 7 is included in Appendix A for completeness, and follows the

same idea as the DMIC proof in Chapter V.

Remark 1: Notice that when SNR1 = SNR2 the sum rate bounds for both inner

and outer regions match. If R1, R2 are non-zero, then choosing R̄1, R̄2 to achieve

the bound in Eq. 6.44 yields Corollary 1. This is readily verified by the summing

R1 + R2 = R̄1 + R̄2 − (U1 + U2).

b. Part 2: Linear Program Formulation

Assume A �= ∅ and let (P1, P2) ∈ A be fixed. First we setup linear programs for

finding the maximum rates of R1 and R2 for Cinner(P1, P2) as defined in Lemma 7.

Finding the maximum R1, R2 can be formulated as the two linear programs below,



100

which easily follows from Lemma 7.

Linear Program 1

maximize R̄1 − U1

subject to U1 ≤ RHS of Eq. 6.39

U2 ≤ RHS of Eq. 6.40

R̄1 ≤ RHS of Eq. 6.42

R̄2 ≤ RHS of Eq. 6.43

R̄1 + R̄2 ≤ RHS of Eq. 6.44

R̄2 − U2 ≥ 0

U1 + U2 = C (SNREq)

R̄1, R̄2, U1, U2 ≥ 0

Linear Program 2

maximize R̄2 − U2

subject to U1 ≤ RHS of Eq. 6.39

U2 ≤ RHS of Eq. 6.40

R̄1 ≤ RHS of Eq. 6.42

R̄2 ≤ RHS of Eq. 6.43

R̄1 + R̄2 ≤ RHS of Eq. 6.44

R̄1 − U1 ≥ 0

U1 + U2 = C (SNREq)

R̄1, R̄2, U1, U2 ≥ 0
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Let R∗
1, R

∗
2 be the maxima of Programs 1 and 2 resp. and let U ′

2, U
′
1 be returned from

Programs 1 and 2 resp. and R̄′
1, R̄

′
2 be returned from Programs 1 and 2 resp. Define:

R′
2 = min

{
1

2
log2

(
K12

σ2
1σ

2
2

)
− R̄′

1, RHS of Eq. 6.43

}
− U ′

2

R′
1 = min

{
1

2
log2

(
K12

σ2
1σ

2
2

)
− R̄′

2, RHS of Eq. 6.42

}
− U ′

1

Then we have the following corollary of Lemma 7.

Corollary 2 Cinner(P1, P2) is given by the convex hull of the points

{(0, 0), (0, R∗
2), (R

∗
1, 0), (R∗

1, R
′
2), (R

′
1, R

∗
2)}.

Proof 1 Assume that the LPs are feasible, i.e. R∗
1, R

∗
2 ≥ 0, then the achievability

of the above points is obvious, and the convex hull operation can be explained using

a time sharing argument. In addition, the fact that R∗
1, R

∗
2 are maximal implies the

convex hull of the above points is the entire Cinner(P1, P2).

To prove R∗
1, R

∗
2 ≥ 0 (which also proves that the LPs are feasible), let

R̄ = {(x, y) : 0 ≤ x ≤ RHS of Eq. 6.42,

0 ≤ y ≤ RHS of Eq. 6.43,

0 ≤ x + y ≤ RHS of Eq. 6.44} (6.45)

and

U = {(x, y) : 0 ≤ x ≤ RHS of Eq. 6.39,

0 ≤ y ≤ RHS of Eq. 6.40,

x + y = C(SNREq)}. (6.46)

It is easy to show R̄ ⊇ U , thus there will always exist a point in R̄ and another point

in U , such that their difference results in a point whose coordinates are both non-
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negative. By definition of R∗
1, R

∗
2 (being maxima), R∗

1, R
∗
2 also must be non-negative.

The two regions we defined in the proof, R̄ and U will come up again in the third

part of the proof.

c. Part 3: Increasing Supersets

To prove that for P1 ≤ Q1, P2 ≤ Q2, (P1, P2) ∈ A, (Q1, Q2) ∈ A implies C inner(P1, P2) ⊆
C inner(Q1, Q2), we use the previous characterization of an inner region as the convex

hull of a finite number of points. Essentially we must show that when power is

increased, each of these points must increase too.

We start by using Corollary 1. Corollary 1 implies that the points along the

diagonal of Fig. 15 sum to

f(Q) =
1

2
log2

(
det(Z + HQHT )

detZ

)
− 1

2
log2

(
1 +

HiQHT
i

σ2
i

)

where

H =


 h1 h21

h12 h2


 , Q =


P1 0

0 P2


 , Z =


σ2

1 0

0 σ2
2


 (6.47)

and Hi is row i of matrix H. f(Q) is increasing in P1, P2 as it has the form of the

secrecy capacity of a degraded wiretap channel. Thus from this expression we know

that the diagonal will increase when the powers are increased.

We now have to show the horizontal and vertical segments of Fig. 15 (if they

exist), also increase with power. More generally, this is equivalent to showing that

R
(1)∗
1 , R

(2)∗
2 increase with increasing power. Fig. 16 illustrates a scenario in which we

are trying to disprove, i.e. prove is impossible. Notice that the diagonal line increases

as we proved above, but the horizontal and vertical parts decrease in this impossible

scenario we set out to prove. To show R
(i)∗
i increases with power, we must find the
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R1

R2

( R
1

(1)*, R
2
' )

( R1', R2
(2)* )

Fig. 15. General Inner Region

form(s) of R
(i)∗
i . It turns out that R

(i)∗
i can take on two forms, i.e. either

Form A =
1

2
log2

(
K12

σ2
1σ

2
2

)
− C (SNREq) (6.48)

Form B = Cmax
R̄i

+ Cmax
Uj

− C (SNREq) , i, j ∈ {1, 2}, i �= j (6.49)

where Cmax
R̄i

is either the LHS of Eqs. 6.42 or 6.43 depending on i, and Cmax
Uj

is either

the LHS of Eqs. 6.39 or 6.40 depending on j. Eqs. 6.48 and 6.49 can be observed from

Appendix B. Also the derivation of these two forms via Appendix B can be further

clarified by perusing the example in Section VI-C-1 first.

Eq. 6.48 is nothing more than f(Q), which we have already shown increases with
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R1

R2

Cinner (P1, P2)

Cinner (Q1, Q2)

Fig. 16. Impossible Scenario When (P1, P2) � (Q1, Q2)

power. Eq. 6.49 can also be written as

Form B =
1

2
log2

(
1 +

h2
1P1 + h2

21P2

σ2
1

+
P1P2h

2
1h

2
21

σ2
1

+
P2h

2
2

σ2
2

+
P1P2h

2
1h

2
2

σ2
1σ

2
2

)

−1

2
log2

(
1 +

h2
1P1 + h2

21P2

σ2
1

)

=
1

2
log2

(
1 +

P2(h
2
2σ

2
1 + h2

1P1(h
2
2 + h2

21σ
2
2))

σ2
2(h

2
1P1 + h2

21P2 + σ2
1)︸ ︷︷ ︸

�g(P1,P2)

)
. (6.50)

Now it is straightforward to show g(P1, P2) is increasing in (P1, P2) by verifying that

∂g(P1,P2)
∂P1

> 0 and ∂g(P1,P2)
∂P2

> 0, and so Eq. 6.49 also increases with power.

From this we have a partial conclusion. If (P1, P2) ∈ A yields a maximum rate
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of Form A, and if (Q1, Q2) ∈ A (where (Q1, Q2) � (P1, P2)) also yields a maximum

rate of Form A, then the maximum rate increases. Similarly if (P1, P2) ∈ A yields a

maximum rate of Form B, and if (Q1, Q2) ∈ A also yields a maximum rate of Form

B, then the maximum rate increases.

For a complete conclusion we must also consider the scenario in which (P1, P2) ∈
A yields a maximum rate of Form A, but (Q1, Q2) ∈ A yields a maximum rate of

Form B, i.e. the forms change, and vice versa. Notice (observed from Appendix B)

that Form B occurs when

Cmax
R̄i

+ Cmax
Uj

≤ 1

2
log2

(
K12

σ2
1σ

2
2

)
, i, j ∈ {1, 2}, i �= j.

Thus when Form B occurs, Form A is larger than Form B. Therefore if we start

with Form B, and applying (Q1, Q2) changes the maximum rate to Form A, then the

maximum rate will have increased. Alternatively, consider starting with Form A, in

which case we have

Cmax
R̄i

+ Cmax
Uj

>
1

2
log2

(
K12

σ2
1σ

2
2

)
, i, j ∈ {1, 2}, i �= j.

Thus when Form A occurs, Form B is larger than Form A. Therefore if we start

from Form A, and applying (Q1, Q2) changes the maximum rate to Form B, then the

maximum rate will have increased. This proves that increasing power always results

in an inner region that is a superset.

As a concluding remark, we point out that Form B corresponds to the inner

region having a horizontal or vertical part, while Form A corresponds to not having

a horizontal or vertical part.
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d. Part 4: Maximum Power Allocation

First we prove that the power assignments must be from A (Eq. 6.15) under the equal

SNR assumption. The fact that (P1, P2) must lie on the line P1 = αP2 (where α is

from Eq. 6.12) easily follows from solving the equation SNR1 = SNR2 as the reader

may verify. The lower bounds γ1, γ2 (Eqs. 6.13 and 6.14) are not as straightforward

to see. First note that α must be positive, otherwise P1 would be negative, which is

impossible. α is positive under the following conditions:

h2
21

h2
2

<
σ2

1

σ2
2

and
h2

12

h2
1

<
σ2

2

σ2
1

or (6.51)

h2
21

h2
2

>
σ2

1

σ2
2

and
h2

12

h2
1

>
σ2

2

σ2
1

. (6.52)

Next note that the U region is not a multiple access channel (MAC) region even if

the almost-equality in Eq. 6.41 is changed to an equality ≤. This is because U1, U2

in Eqs. 6.39 and 6.40 are bounded by the minima of capacities of different channels.

Thus we must manually enforce the following, (which is always guaranteed for a

MAC):

Cmax
U1

+ Cmax
U2

≥ C (SNREq) , (6.53)

where Cmax
U1

and Cmax
U2

are the left hand sides of Eqs. 6.39 and 6.40, respectively.

This is required since if Eq. 6.53 is not satisfied, then the almost-equality in Eq. 6.41

cannot be satisfied either, and the coding scheme of Lemma 7 cannot be used. From

Eqs. 6.51 and 6.52, we can make Eq. 6.53 explicit.

When Eq. 6.52 is true, the reader can verify that

Cmax
U1

= C

(
h2

1P1

σ2
1

)
, Cmax

U2
= C

(
h2

2P2

σ2
2

)
, (6.54)
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which implies

P1 ≥ σ2
2h

2
21

h2
1h

2
2

− σ2
1

h2
1

, P2 ≥ σ2
1h

2
12

h2
1h

2
2

− σ2
2

h2
2

, (6.55)

matching the corresponding cases in γ1 and γ2 (Eqs. 6.13 and 6.14), respectively.

When Eq. 6.51 is true, the same technique may be applied. Thus this establishes the

admissible power set A.

From the Part 3 of this proof we know that allocating the maximum power is

optimal. We now prove that Table IV assigns the maximum power. Let us assume

for now that γ1 = γ2 = 0, so that only Pmax
1 and Pmax

2 are important.

Consider the case when P max
2 > Pmax

1 and 0 < α < 1. We would like to choose

Pmax
1 or Pmax

2 whichever is possible. If αPmax
2 > Pmax

1 , and we choose P1 = Pmax
1 , then

P2 = Pmax
1 /α < Pmax

2 , thus User 2’s power constraint is not violated. If αPmax
2 ≤

Pmax
1 , and we choose P2 = Pmax

2 , then P1 = αPmax
2 ≤ Pmax

1 , thus User 1’s power

constraint is not violated.

Consider the case when P max
2 > Pmax

1 and α > 1. We would like to choose P max
1

or Pmax
2 whichever is possible. If αPmax

2 > Pmax
1 , and we choose P1 = Pmax

1 , then

P2 = Pmax
1 /αPmax

2 , thus User 2’s power constraint is not violated. Finally, under this

scenario it is impossible to have αPmax
2 ≤ Pmax

1 , since α > 1 and Pmax
2 > Pmax

1 .

Consider the case when P max
2 < Pmax

1 and 0 < α < 1, which implies P2 > P1. We

would like to choose P max
1 or Pmax

2 whichever is possible. If αPmax
2 ≤ Pmax

1 , and we

choose P2 = Pmax
2 then User 1’s power constraint is not violated since P1 = αPmax

2 .

Finally, under this scenario it is impossible to have αPmax
2 > Pmax

1 , since 0 < α < 1,

and Pmax
2 < Pmax

1 , thus the optimal power allocation for this scenario is always

P1 = αPmax
2 and P2 = Pmax

2 .

Consider the case when Pmax
2 < Pmax

1 and α > 1, which implies P2 < P1. We

would like to choose P max
1 or Pmax

2 whichever is possible. If αPmax
2 > Pmax

1 , then P2 =



108

Pmax
1 /α < Pmax

2 , thus User 2’s power constraint is not violated. If αPmax
2 ≤ Pmax

1 ,

and we choose P2 = Pmax
2 , then User 1’s power constraint is not violated as before.

Finally we deal with the case when γ1, γ2 �= 0. In all cases in Table IV, the

maximum power possible is allocated. Thus if this maximum power does not meet

either P1 ≥ γ1 or P2 ≥ γ2, then no power allocation exists, and rates of zero are

necessary for both users under our equal SNR assumption coding technique.

3. Informal Sensitivity Analysis Interpretation

Part 3 of the proof of Theorem 9 is quite tedious and does not provide clear insights.

In this section we give a brief informal insight into why the maximum rates increase

as the powers are increased using ideas from sensitivity analysis.

As always for the proofs assume A �= ∅. We will work with Linear Program 2

(LP 2), and note that the same ideas can be applied to Linear Program 1. LP 2 can

be put into standard form, that is, the constraints are all equality constraints. Next,

the dual function for LP 2 in standard form can be derived as

g(ν) =




−dT ν if ν1, . . . , ν6 ≥ 0,

ν1 + ν6 + ν7 ≥ 0,

ν2 + ν7 ≥ 1,

ν4 + ν5 ≥ −1,

−∞ otherwise.

(6.56)

where

d =


 b

C (SNREq)


 (6.57)

with b from Eq. 6.16. Therefore the primal program equality constraint has the
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following form: Gx−d = 0 where d is the vector given in Eq. 6.57. Notice that when

P1, P2 are increased, the components in the vector d increase; let v � 0 be the vector

of these increases. Thus when the powers are increased, d is perturbed and becomes

d + v.

Let p∗(v) be the optimal value of LP 2 as a function of v. We will not prove that

p∗(v) is differentiable at v = 0 as this discussion is informal, so towards this end let

us assume that this is the case. Then since strong duality holds for LP 2 (since it is

feasible), the optimal dual variables ν∗ (cf. ν in Eq. 6.56) is related by

ν∗
i = −∂p∗(0)

∂vi
, (6.58)

and thus ∂p∗(0) = −ν∗
i ∂vi. Since v � 0 this implies ∂vi ≥ 0. Next, from Eq. 6.56, we

see that almost all νi ≥ 0, thus together with ∂vi ≥ 0, most ∂p∗(0) ≤ 0. This means

that increasing the power is likely to decrease the optimal value of LP 2, or in other

words increase User 2’s rate.

4. Derivation of Random Fading Result

It is easier to derive the complement probability Pr{A �= ∅}, and we do so to-

wards this end. There are three main events that must occur: {α > 0}, and

{Pmax
1 > γ1}, {Pmax

2 > γ2}, of which α, γ1, γ2 are functions of the random variables

|h1|2, |h2|2, |h12|2, |h21|2 described above. We simplify the derivation by separating

the {α > 0} event into two disjoint events given by Eqs. 6.51 and 6.52, respectively.

Since these two events are disjoint, the complement probability is the sum of two



110

probabilities.

Pr{A �= ∅} = Pr

{
|h21|2
|h2|2 >

N1

N2
and

|h12|2
|h1|2 >

N2

N1

and Pmax
1 ≥ N2|h21|2

|h1|2|h2|2 − N1

|h1|2 and Pmax
2 ≥ N1|h12|2

|h1|2|h2|2 − N2

|h2|2
}

+ Pr

{
|h21|2
|h2|2 <

N1

N2
and

|h12|2
|h1|2 <

N2

N1

and Pmax
1 ≥ N1|h2|2

|h12|2|h21|2 − N2

|h12|2 and Pmax
2 ≥ N2|h1|2

|h12|2|h21|2 − N1

|h21|2
}

(6.59)

The above expression is still far too complex to obtain a closed form expression, thus

we apply a few standard devices. The reader may verify that the above expression

may be simplified to the following by combing conditions, using the total probability

theorem, and noting that |h1|2, |h2|2, |h12|2, |h21|2 are independent:

Pr{A �= ∅}

=

∫ ∞

0

∫ ∞

0

Pr

{
|h2|2 N1

N2
< |h21|2 ≤ |h2|2

N2
(Pmax

1 |h1|2 + N1)
∣∣∣ |h1|2 = s, |h2|2 = t

}

Pr

{
|h1|2N2

N1

< |h12|2 ≤ |h1|2
N1

(Pmax
2 |h2|2 + N2)

∣∣∣ |h1|2 = s, |h2|2 = t

}
Pr{|h1|2 = s}Pr{|h2|2 = t} ds dt

+

∫ ∞

0

∫ ∞

0

Pr

{
|h21|2N2

N1
< |h2|2 ≤ |h21|2

N1
(|h12|2Pmax

1 + N2)
∣∣∣

|h12|2 = u, |h21|2 = v

}

Pr

{
|h12|2N1

N2

< |h1|2 ≤ |h12|2
N2

(|h21|2Pmax
2 + N1)

∣∣∣ |h12|2 = u, |h21|2 = v

}
Pr{|h12|2 = u}Pr{|h21|2 = v} du dv. (6.60)

The simplified expression above allows us to use the cumulative distribution function

(cdf) of the exponential distribution inside the integrals. Taking the integral then
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yields

Pr{A �= ∅}

=
(β1β2 + β12β21)N1N2

(β12N1 + β1N2)(β2N1 + β21N2)

+
β1β2N1N2

β12β21(β1N2Pmax
1 + β2N1Pmax

2 )
· E

(
(β12N1 + β1N2)(β2N1 + β21N2)

β12β21(β1N2Pmax
1 + β2N1Pmax

2 )

)

+
β12β21N1N2

β1β2(β12N1Pmax
1 + β21N2Pmax

2 )
· E

(
(β12N1 + β1N2)(β2N1 + β21N2)

β1β2(β12N1Pmax
1 + β21N2Pmax

2 )

)

− β21N2

β1β2P
max
1

· E
(

(β12N1 + β1N2)(β2N1 + β21N2)

β1β2β12N1P
max
1

)

− β1N2

β12β21Pmax
2

· E
(

(β12N1 + β1N2)(β2N1 + β21N2)

β2β12β21N1Pmax
2

)

− β2N1

β12β21Pmax
1

· E
(

(β12N1 + β1N2)(β2N1 + β21N2)

β1β12β21N2Pmax
1

)

− β12N1

β1β2P
max
2

· E
(

(β12N1 + β1N2)(β2N1 + β21N2)

β1β2β21N2P
max
2

)
. (6.61)

Then applying the definitions in Eqs. 6.23, 6.24, 6.25 to Eq. 6.61 yields Eq. 6.26.

5. Inner Region for the Z-Channel

The inner region for the Z-channel is a straightforward application of [102]. In [102],

a terminal wishes to send a secret message to a base station. A wiretapper nearby

can also listen to the transmissions of the terminal. A second base station nearby

produces artificial noise with the goal of jamming the wiretapper. This artificial

noise also affects the first base station, however the first base station has a copy of

this artificial noise, and hence can subtract it prior to decoding. The system model

can be described by

Y n
B = hTBXn

T + ZB (6.62)

Y n
W = hTWXn

T + hBW Xn
B + ZW (6.63)



112

where Y n
B is the vector received at the first base station after subtracting the artificial

noise, hTB is the channel gain from the sending terminal to the first base station,

Xn
T is the codeword sent by the terminal, Zn

B ∼ N (0, σ2
BIn) is noise experienced on

the channel from the terminal to the base station, Y n
E is the vector received by the

wiretapper, hTW is the channel gain from the sending terminal to the wiretapper, hBW

is the channel gain from the second base station (the jammer) to the wiretapper, Xn
B

is the artificial noise sent by the second base station, and Zn
W ∼ N (0, σ2

W In) accounts

for the AWGN experienced by the wiretapper. For simplicity, we have subtracted Xn
B

from the first base station, which is why it is absent in Eq. 6.62, although in practice

the first base station would perform this in its decoder. This simplified system model

is illustrated in Fig. 17. Let RT be the rate of the sending terminal, and RB be the

Terminal

XT
n

Base
Station 1+

ZB
n

hTB

+Base
Station 2

hTW

YB
n

XB
n

Wiretapper

hBW
YW

n

ZW
n

Fig. 17. Secure Communications via Cooperating Base Stations
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rate of the second base station (the jammer). Let PT be the power at the sending

terminal, and PB be the power at the second base station. In [102] the following rate

RT as a function of RB is shown to be achievable with unconditional secrecy:

RT (RB) =




R
(l)
T if RB < C

(
h2

BW PB

σ2
W +h2

TW PT

)
,

R
(m)
T if C

(
h2

BW PB

σ2
W +h2

TW PT

)
< RB ≤ C

(
h2

BW PB

σ2
W

)
,

R
(u)
T if RB > C

(
h2

BW PB

σ2
W

)
.

(6.64)

where

R
(l)
T =

∣∣∣∣C
(

h2
TBPT

σ2
B

)
− C

(
h2

TW PT

σ2
W

)∣∣∣∣+ (6.65)

R
(m)
T =

∣∣∣∣C
(

h2
TBPT

σ2
B

)
− C

(
h2

TW PT

σ2
W

+
h2

BW PB

σ2
W

)
+ RB

∣∣∣∣+ (6.66)

R
(u)
T =

∣∣∣∣C
(

h2
TBPT

σ2
B

)
− C

(
h2

TW PT

σ2
W + h2

BW PB

)∣∣∣∣+ . (6.67)

Although this does not appear to be related to our problem, since the wiretapper

has his own channel, our Z-channel is in fact a special case of this problem. Consider

our Z-channel in which h12 = 0 in Fig. 11. In this case User 2 clearly cannot achieve

unconditional secrecy. Thus User 2 must play the role of the jammer to protect User

1’s message from a wiretapper who intercepts Y n
1 in Fig. 11. Note that since the

wiretapper can only choose either Y n
1 and Y n

2 , the wiretapper should always choose

Y n
1 , which is the only one containing the secret message; Y n

2 only contains noise and

User 2’s jamming signal. On the other hand since the base station receives both Y n
1

and Y n
2 , the base station can subtract Xn

2 from Y n
1 if and only if User 2’s rate is less

than or equal to its channel capacity C
(

h2
2P2

σ2
2

)
. Since User 2 should maximize its rate

in order to jam the wiretapper as much as possible, we set R2 = C
(

h2
2P2

σ2
2

)
.

If we let hTB = hTW = h1, Zn
B = Zn

W = Zn
1 , hBW = h21, Y n

W = Y n
1 , and Y n

B is

equal to Y n
1 minus User 2’s jamming signal (available to the base station through Y n

2 ),
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then the relationship between our Z-channel and Fig. 17 is apparent. Then setting

P1 = PT , P2 = PB, R1 = RT , R2 = RB = C
(

h2
2P2

σ2
2

)
and then applying Eq. 6.64 yields

the inner region for our Z-channel:

R1 =




0 if
h2
2

σ2
2

<
h2
21

σ2
1+h2

1P1
,∣∣∣C (

h2
1P1

σ2
1

)
+ C

(
h2
2P2

σ2
2

)
− C (SNR1)

∣∣∣+ if
h2
21

σ2
1+h2

1P1
<

h2
2

σ2
2
≤ h2

21

σ2
1
,

C
(

h2
1P1

σ2
1

)
− C

(
h2
1P1

σ2
1+h2

21P2

)
if

h2
2

σ2
2

>
h2
21

σ2
1
.

(6.68)

where SNR1, SNR2 given in Eqs. 6.9 and 6.10, respectively. Interestingly, R1 ∈
Cinner(P1, P2) where Cinner(P1, P2) is the equal SNR inner region in Section VI-B-2 for

h12 chosen appropriately such that SNR1 = SNR2. The implication of this result is

that adding the cross-link h12 does not lower the rate of User 1, but in fact usually

increases the rate of User 1. The intuition is that adding the cross-link h12 gives the

base station more information about User 1’s secret message. Of course at the same

time the wiretapper may now try to access User 1’s secret message through the second

channel, which in the Z-channel setup carried only User 2’s jamming signal. However

our equal SNR coding technique compensates for this, and usually out performs the

Z-channel coding technique of [102] in terms of User 1’s rate while still ensuring both

channels are unconditionally secure.

E. Summary of Results

In this chapter we extended Chapter V to the Gaussian interference channel. Under

this scenario, we showed many interesting and important properties. The “statistical

similarity” property from Chapter V naturally translates to the equal SNR property.

With a given power constraint, we found the set of admissible power schemes that

ensures equal SNR. An important technical property we derived is the fact that the
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inner region can be expressed as a single region (instead of an infinite union of regions

as is the case in Chapter V), and that this region results from using the maximum

power scheme from the set of admissible power schemes. When the power constraint

lies in the admissible power set, the inner region and outer region partially coincide

on the diagonal, which suggests that using Gaussian codebooks without pre-coding

may be close to optimal. To further demonstrate that our inner region is significant,

we showed the inner region of a related Z-channel problem is a subset of our inner

region. Lastly, we derived a kind of “outage” probability under the slow and flat

Rayleigh fading scenario, which shows that if we are willing to pay a price in power,

then the channel has a non-zero probability of being favorable for unconditional secret

communications under the equal SNR regime.
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CHAPTER VII

SUMMARY, FUTURE WORK AND CONCLUSIONS

A. Summary

The core results in this dissertation establish the interaction between source coding

and secrecy, and channel coding and secrecy. The main theoretical conclusion that

this dissertation offers is that given our keyless, inter-node communicationless, and

“secret sharing” eavesdropping model, noise/distortion alone is not enough to pro-

vide unconditional secrecy. Surprisingly, a necessity of unconditional secrecy is the

existence of random interference and fading, which are usually seen as a hindrance to

communications systems.

For the first part of our dissertation we analyze the interaction between source

coding and secrecy using multiterminal source coding theorems [5]–[7]. We derive

inner and outer regions for the set of all source coding and equivocation (measure of

secrecy) rates (which we call the capacity region) for user-defined distortion criteria.

We show that unconditional secrecy is only achievable if the distortion is maximal,

which means no information is sent. We then show that feedback from the base

station to the legitimate users does not improve equivocation. We do this by deriving

an upper bound on the secret key rate that can be achieved without feedback, and

comparing this to an upper bound on the secret key rate using feedback [8], [9].

In the second part of our research, we extend the existing distributed source cod-

ing using syndromes (DISCUS) Slepian-Wolf coding scheme. DISCUS is the practical

implementation of the multitermianl source coding problem without distortion. We

show that using equivocation as the measure of secrecy leaks too much information to

the eavesdropper. This can be understood from our first result where unconditional



117

secrecy is unachievable and thus equivocation is not maximal. Thus this motivates

the definition of a set of additional secrecy requirements. We show how these ad-

ditional requirements can be implemented by modifying DISCUS. One of the main

results is that the subcodes in DISCUS should be maximum distance separable, and

furthermore we show how to partition a Reed-Solomon code to meet the subcode and

supercode requirements of DISCUS.

In the third part of our research we study the interaction between channel coding

and secrecy in the context of the general discrete memoryless interference channel.

We derive inner and outer regions of the secrecy capacity region, which is the set

of all channel coding rates such that unconditional secrecy is achieved. Surprisingly,

the secrecy capacity region is not empty, thus in contrast with the first part of our

research, interference permits unconditional secrecy. The proof utilizes the random

coding technique of Wyner’s wiretap channel [10] and its generalization [11].

In the final part of our research, we study the interference problem under wireless

settings by assuming that the interference channel has additive white Gaussian noise,

and later augmenting this model with the additional challenge of slow Rayleigh fading.

Again we derive inner and outer regions of the secrecy capacity region for this special

case. Significantly we show that the inner region can be simplified to such an extent

that its description is merely a single region based on an optimal power allocation

scheme without the need for pre-coding (as is the case with the DMIC). This is in

contrast to various mutli-user information theory capacity regions, which are usually

constructed viz. a convex hull of an infinite union of regions. Thus our simplified

region not only contributes to information theorists’ common goal of simplicity, but

also allows future designers to work with a simpler region. Next, our extension of

the interference channel to slow Rayleigh fading demonstrates that interference and

random fading are not only friends rather than foes, but are in fact necessary enablers
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of unconditional secrecy.

B. Future Work

The obvious need to implement solutions based on the theoretical foundations we have

laid in this dissertation drives future work. We have provided a pioneering coding

scheme (in Chapter IV) for the distributed source coding and secrecy problem based

on DISCUS. We expect that as research in practical multiterminal source coding

continues, newer codes that combine lossy compression and distributed secrecy will

arise thus better serving multimedia communication needs.

Practical (Wyner) wiretap channel codes (excluding type II wiretap channel

codes) for the channel coding and secrecy problem are still emerging. We expect

that research in coding pertaining to variations of the wiretap channel will flourish

once the solution for the original wiretap channel is solidified. Thus we expect that

practical codes for our channel coding models of Chapters V and VI will be explored

in the near future (since these models may be considered variations of the original

wiretap channel).

C. General Conclusions

This dissertation explores the first information theoretic model of sensor network secu-

rity/confidentiality. We identify some important differences between the nascent field

of sensor networks and the classical computer and cellular networks that naturally

require a shift to a keyless, inter-node communicationless, and “secret sharing” eaves-

dropping paradigm. A necessary first step of any bold paradigm shift is to discover

the possible and impossible, the examination of which is central to this dissertation.

It is hoped that the solid foundations in this work will offer guidance for the design
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of optimal or near-optimal solutions, the discovery of which would otherwise prove

challenging if not impossible. More recent history has shown that when foundations

in modern research are not first laid, the resulting solutions are ad hoc, and usually

far from optimal. Of course there are exceptions to this observation, however more

often than not, theoretical foundations drive optimal solutions. For example, modern

coding schemes for communication systems are in part driven by the goal of reaching

the Shannon limit in communications, and some even emulate the ideas of theoretical

proofs: LDPC and turbo codes attempt to emulate the random coding idea, while

DISCUS emulates the Slepian-Wolf binning idea. Thus it is hoped that information

theorists and the practical sensor network community will both find this dissertation

informative.
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APPENDIX A

PROOF OF LEMMA 7

Codebook generation

Randomly generate two tables. The first table will have 2n(R̄1−ε) vectors (codewords)

whose components are randomly drawn from the normal distribution N (0, P max
1 − ε).

Similarly, the second table will have 2n(R̄2−ε) vectors whose components are randomly

drawn from the normal distribution N (0, P max
2 −ε). The first table has 2nR1 rows and

2n(U1−ε′) columns, while the second table has 2nR2 and 2n(U2−ε′) columns. The rates

R̄1, R̄2, U1, U2 are chosen to satisfy Eqs. 6.39 to 6.44.

Encoding

If User 1 wishes to send index i ∈ {1, . . . , 2nR1}, randomly (uniformly) select a code-

word from row i of the first table; call this Xn
1 . If User 2 wishes to send index

j ∈ {1, . . . , 2nR2}, randomly (uniformly) select a codeword from row j of the second

table; call this Xn
2 .

Decoding

Notice that the overall channel as seen by the base station is a MAC with independent

inputs Xn
1 and Xn

2 , and output (Y n
1 , Y n

2 ). It is known that the average probability of

error tends to 0 as n → ∞ if

R̄1 < I(X1; Y1, Y2|X2)

R̄2 < I(X2; Y1, Y2|X1)

R̄1 + R̄2 < I(X1, X2; Y1, Y2)



134

for some codebook generated randomly as above, which is precisely Eqs. 6.42 to

6.44 for the Gaussian MAC. Thus by the Gaussian MAC theorem, Xn
1 and Xn

2 are

decodable by the base station given (Y n
1 , Y n

2 ). In addition (Xn
1 , Xn

2 ) are unique in the

two tables resp. and thus the base station can uniquely identify the rows (̂i, ĵ).

Secrecy Analysis

To show the above construction achieves unconditional secrecy, we write

H(W1, W2|Y n
i ) = H(W1, W2) − I(W1, W2; Y

n
i )

= H(W1, W2) − H(Y n
i ) + H(Y n

i |W1, W2)

(a)
= H(W1, W2) − H(Y n

i ) + H(Y n
i |Xn

1 , Xn
2 )

+H(Y n
i |W1, W2) − H(Y n

i |Xn
1 , Xn

2 , W1, W2)

= H(W1, W2) − I(Y n
i ; Xn

1 , Xn
2 )

+I(Y n
i ; Xn

1 , Xn
2 |W1, W2)

= H(W1, W2) − I(Y n
i ; Xn

1 , Xn
2 )

+H(Xn
1 , Xn

2 |W1, W2) − H(Xn
1 , Xn

2 |Y n
i , W1, W2)

(b)
= H(W1, W2) − I(Y n

i ; Xn
1 , Xn

2 ) + H(Xn
1 |W1)

+H(Xn
2 |W2) − H(Xn

1 , Xn
2 |Y n

i , W1, W2)

(c)
= H(W1, W2) − I(Y n

i ; Xn
1 , Xn

2 ) + n(U1 − ε′)

+n(U2 − ε′) − H(Xn
1 , Xn

2 |Y n
i , W1, W2)

(d)
= H(W1, W2) − 2nε′′ − H(Xn

1 , Xn
2 |Y n

i , W1, W2). (A.1)

The explanations are: (a) (W1, W2) ↔ (Xn
1 , Xn

2 ) ↔ Y n
i forms a Markov chain; (b)

from the factorization of the encoding distribution (cf. Definition 4); (c) from the

codebook generation and encoding; (d) from Eq. 6.41. Finally note that the eaves-
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dropper also sees a MAC, either (Xn
1 , Xn

2 ) → Y n
1 if he intercepts Y n

1 or (Xn
1 , Xn

2 ) → Y n
2

if he intercepts Y n
2 . When the eavesdropper is given the rows W1, W2 of the two ta-

bles, the eavesdropper is looking at a MAC code with 2n(U1−ε′), 2n(U2−ε′) codewords,

which satisfy the MAC theorem (cf. Eqs. 6.39 to 6.41), and thus he is able to decode

Xn
1 , Xn

2 by the MAC theorem whether he wishes to or not! Thus the last term in

Eq. A.1 is bounded by Fano’s inequality resulting in

H(W1, W2|Y n
i ) ≥ H(W1, W2) − nε. (A.2)

To complete the secrecy proof for each individual message, we write

H(W1) + H(W2|Y n
i ) ≥ H(W1|Y n

i ) + H(W2|W1, Y
n
i )

= H(W1, W2|Y n
i )

≥ H(W1, W2) − nε

= H(W1) + H(W2) − nε (A.3)

where the last equality follows since W1, W2 are independent. This proves

H(W2|Y n
i ) ≥ H(W2) − nε (A.4)

and the secrecy for the other message can be proved in the same way.

Notice that in Eq. A.1(d), we used the equal SNR assumption of Eqs. 6.36 and

6.41 to ensure unconditional secrecy is achieved whether the eavesdropper intercepts

Y n
1 or Y n

2 .
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APPENDIX B

ENUMERATION OF R̄, U REGIONS

Recall in the proof of Corollary 2 the subtraction of points in the R̄ and U regions

yield points in the inner region when the difference is positive. The U region is the

(thicker) red diagonal lines in each of the plots in Fig. 18. The R̄ region consists of all

points enclosed and including the blue lines in Fig. 18. Without loss of generality we

have only plotted the interactions between these two regions along the vertical axes.

Thus the maximum veritical distance between a blue line and the thick red line yields

the maximum rate (either R
(1)∗
1 or R

(2)∗
2 ). The reader can verify that this maximum

vertical distance only takes on two forms, A and B as given by Eqs. 6.48 and 6.49.

It is perhaps easiest to see this by first perusing the example in Section VI-C-1.



137

A A A A

B B

A A A A

A A B B

A A A A

A A

Fig. 18. R̄, U Region Interactions for Vertical Axes
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