11,765 research outputs found

    Which verification qubits perform best for secure communication in noisy channel?

    Full text link
    In secure quantum communication protocols, a set of single qubits prepared using 2 or more mutually unbiased bases or a set of nn-qubit (n2n\geq2) entangled states of a particular form are usually used to form a verification string which is subsequently used to detect traces of eavesdropping. The qubits that form a verification string are referred to as decoy qubits, and there exists a large set of different quantum states that can be used as decoy qubits. In the absence of noise, any choice of decoy qubits provides equivalent security. In this paper, we examine such equivalence for noisy environment (e.g., in amplitude damping, phase damping, collective dephasing and collective rotation noise channels) by comparing the decoy-qubit assisted schemes of secure quantum communication that use single qubit states as decoy qubits with the schemes that use entangled states as decoy qubits. Our study reveals that the single qubit assisted scheme perform better in some noisy environments, while some entangled qubits assisted schemes perform better in other noisy environments. Specifically, single qubits assisted schemes perform better in amplitude damping and phase damping noisy channels, whereas a few Bell-state-based decoy schemes are found to perform better in the presence of the collective noise. Thus, if the kind of noise present in a communication channel (i.e., the characteristics of the channel) is known or measured, then the present study can provide the best choice of decoy qubits required for implementation of schemes of secure quantum communication through that channel.Comment: 11 pages, 4 figure

    Some Directions beyond Traditional Quantum Secret Sharing

    Full text link
    We investigate two directions beyond the traditional quantum secret sharing (QSS). First, a restriction on QSS that comes from the no-cloning theorem is that any pair of authorized sets in an access structure should overlap. From the viewpoint of application, this places an unnatural constraint on secret sharing. We present a generalization, called assisted QSS (AQSS), where access structures without pairwise overlap of authorized sets is permissible, provided some shares are withheld by the share dealer. We show that no more than λ1\lambda-1 withheld shares are required, where λ\lambda is the minimum number of {\em partially linked classes} among the authorized sets for the QSS. Our result means that such applications of QSS need not be thwarted by the no-cloning theorem. Secondly, we point out a way of combining the features of QSS and quantum key distribution (QKD) for applications where a classical information is shared by quantum means. We observe that in such case, it is often possible to reduce the security proof of QSS to that of QKD.Comment: To appear in Physica Scripta, 7 pages, 1 figure, subsumes arXiv:quant-ph/040720

    Quantum rebound capacity

    Get PDF
    Inspired by the power of abstraction in information theory, we consider quantum rebound protocols as a way of providing a unifying perspective to deal with several information-processing tasks related to and extending quantum channel discrimination to the Shannon-theoretic regime. Such protocols, defined in the most general quantum-physical way possible, have been considered in the physical context of the DW model of quantum reading [Das and Wilde, arXiv:1703.03706]. In [Das, arXiv:1901.05895], it was discussed how such protocols apply in the different physical context of round-trip communication from one party to another and back. The common point for all quantum rebound tasks is that the decoder himself has access to both the input and output of a randomly selected sequence of channels, and the goal is to determine a message encoded into the channel sequence. As employed in the DW model of quantum reading, the most general quantum-physical strategy that a decoder can employ is an adaptive strategy, in which general quantum operations are executed before and after each call to a channel in the sequence. We determine lower and upper bounds on the quantum rebound capacities in various scenarios of interest, and we also discuss cases in which adaptive schemes provide an advantage over non-adaptive schemes in zero-error quantum rebound protocols.Comment: v2: published version, 7 pages, 2 figures, see companion paper at arXiv:1703.0370
    corecore