2,881 research outputs found

    Fog based Secure Framework for Personal Health Records Systems

    Get PDF
    The rapid development of personal health records (PHR) systems enables an individual to collect, create, store and share his PHR to authorized entities. Health care systems within the smart city environment require a patient to share his PRH data with a multitude of institutions' repositories located in the cloud. The cloud computing paradigm cannot meet such a massive transformative healthcare systems due to drawbacks including network latency, scalability and bandwidth. Fog computing relieves the burden of conventional cloud computing by availing intermediate fog nodes between the end users and the remote servers. Aiming at a massive demand of PHR data within a ubiquitous smart city, we propose a secure and fog assisted framework for PHR systems to address security, access control and privacy concerns. Built under a fog-based architecture, the proposed framework makes use of efficient key exchange protocol coupled with ciphertext attribute based encryption (CP-ABE) to guarantee confidentiality and fine-grained access control within the system respectively. We also make use of digital signature combined with CP-ABE to ensure the system authentication and users privacy. We provide the analysis of the proposed framework in terms of security and performance.Comment: 12 pages (CMC Journal, Tech Science Press

    Integrated, reliable and cloud-based personal health record: a scoping review.

    Get PDF
    Personal Health Records (PHR) emerge as an alternative to integrate patient’s health information to give a global view of patients' status. However, integration is not a trivial feature when dealing with a variety electronic health systems from healthcare centers. Access to PHR sensitive information must comply with privacy policies defined by the patient. Architecture PHR design should be in accordance to these, and take advantage of nowadays technology. Cloud computing is a current technology that provides scalability, ubiquity, and elasticity features. This paper presents a scoping review related to PHR systems that achieve three characteristics: integrated, reliable and cloud-based. We found 101 articles that addressed thosecharacteristics. We identified four main research topics: proposal/developed systems, PHR recommendations for development, system integration and standards, and security and privacy. Integration is tackled with HL7 CDA standard. Information reliability is based in ABE security-privacy mechanism. Cloud-based technology access is achieved via SOA.CONACYT - Consejo Nacional de Ciencia y TecnologíaPROCIENCI

    Fine-Grained Access Control with Attribute Based Cache Coherency for IoT with application to Healthcare

    Get PDF
    The Internet of Things (IoT) is getting popular everyday around the world. Given the endless opportunities it promises to provide, IoT is adopted by various organizations belonging to diverse domains. However, IoT’s “access by anybody from anywhere” concept makes it prone to numerous security challenges. Although data security is studied at various levels of IoT architecture, breach of data security due to internal parties has not received as much attention as that caused by external parties. When an organization with people spread across multiple levels of hierarchies with multiple roles adopts IoT, it is not fair to provide uniform access of the data to everyone. Past research has extensively investigated various Access Control techniques like Role Based Access Control (RBAC), Identity Based Access Control (IBAC), Attribute Based Access Control (ABAC) and other variations to address the above issue. While ABAC meets the needs of the growing amount of subjects and objects in an IoT environment, when implemented as an encryption algorithm (ABE) it does not cater to the IoT RDBMS applications. Also, given the query processing over huge encrypted data-set on the Cloud and the distance between the Cloud and the end-user, latency issues are highly prevalent in IoT applications. Various Client side caching and Server side caching techniques have been proposed to meet the latency issues in a Client-Server environment. Client side caching is more appropriate for an IoT environment given the dynamic connections and the large volume of requests to the Cloud per unit time. However, an IoT Cloud has mixed critical data to every user and conventional Client side caching techniques do not exploit this property of IoT data. In this work, we develop (i) an Attribute Based Access Control (ABAC) mechanism for the IoT data on the Cloud in order to provide a fine-grained access control in an organization and (ii) an Attribute Based Cache Consistency (ABCC) technique that tailors Cache Invalidation according to the users’ attributes to cater to the latency as well as criticality needs of different users. We implement and study these models on a Healthcare application comprising of a million Electronic Health Record (EHR) Cloud and a variety of end-users within a hospital trying to access various fields of the EHR from their Smart devices (such as Android phones). ABAC is evaluated with and without ABCC and we shall observe that ABAC with ABCC provides a lower average latency but a higher staleness percentage than the one without ABCC. However, the staleness percentage is negligible since we can see that much of the data that contributes to the staleness percentage are the non-critical data, thus making ABAC with ABCC an efficient approach for IoT based Cloud applications

    Self Controllable Health Care Monitoring Arrangement for Patient

    Get PDF
    In this undertaking is utilized to the Condition care monitoring system. Distributed Healthcare cloud computing arrangement considerably facilitates effectual patient treatment for health consultation by allocating confidential condition data amid healthcare providers. Though, it brings concerning the trial of keeping both the data confidentiality and patients’ individuality privacy simultaneously. Countless continuing admission manipulation and nameless authentication schemes cannot be straightforwardly exploited. The arrangement acts there are provider, doctor, patient and admin. The provider is list to website to consent staying to appeal dispatch to admin. Admin is Proved to in a particular provider it deeds to the present add to doctors and hospital divisions established. User or Patient is list to the site. Patient Login to present the deed booking the doctor appointment in situation patient to dispatch a feedback to that doctor treatment comments onward to admin. Doctors is add provider to dispatch a username and password .Doctor is login to think patient appointment features and checking the doctor is present patient or fake user to identified to dispatch to symptoms description upload files(x-ray).Admin is finished procedure is upheld in this system. Patient dispatch doctors feedback bad or wrong to particular doctors appointment annulled temporally. In this undertaking generally utilized for patient and hospital ,doctors features through online upheld for India astute established on card

    Exploring Predicate Based Access Control for Cloud Workflow Systems

    Get PDF
    Authentication and authorization are the two crucial functions of any modern security and access control mechanisms. Authorization for controlling access to resources is a dynamic characteristic of a workflow system which is based on true business dynamics and access policies. Allowing or denying a user to gain access to a resource is the cornerstone for successful implementation of security and controlling paradigms. Role based and attribute based access control are the existing mechanisms widely used. As per these schemes, any user with given role or attribute respectively is granted applicable privileges to access a resource. There is third approach known as predicate based access control which is less explored. We intend to throw light on this as it provides more fine-grained control over resources besides being able to complement with existing approaches. In this paper we proposed a predicate-based access control mechanism that caters to the needs of cloud-based workflow systems

    Health data in cloud environments

    Full text link
    The process of provisioning healthcare involves massive healthcare data which exists in different forms on disparate data sources and in different formats. Consequently, health information systems encounter interoperability problems at many levels. Integrating these disparate systems requires the support at all levels of a very expensive infrastructures. Cloud computing dramatically reduces the expense and complexity of managing IT systems. Business customers do not need to invest in their own costly IT infrastructure, but can delegate and deploy their services effectively to Cloud vendors and service providers. It is inevitable that electronic health records (EHRs) and healthcare-related services will be deployed on cloud platforms to reduce the cost and complexity of handling and integrating medical records while improving efficiency and accuracy. The paper presents a review of EHR including definitions, EHR file formats, structures leading to the discussion of interoperability and security issues. The paper also presents challenges that have to be addressed for realizing Cloudbased healthcare systems: data protection and big health data management. Finally, the paper presents an active data model for housing and protecting EHRs in a Cloud environment
    • 

    corecore