1,400 research outputs found

    Distributed Protocols at the Rescue for Trustworthy Online Voting

    Get PDF
    While online services emerge in all areas of life, the voting procedure in many democracies remains paper-based as the security of current online voting technology is highly disputed. We address the issue of trustworthy online voting protocols and recall therefore their security concepts with its trust assumptions. Inspired by the Bitcoin protocol, the prospects of distributed online voting protocols are analysed. No trusted authority is assumed to ensure ballot secrecy. Further, the integrity of the voting is enforced by all voters themselves and without a weakest link, the protocol becomes more robust. We introduce a taxonomy of notions of distribution in online voting protocols that we apply on selected online voting protocols. Accordingly, blockchain-based protocols seem to be promising for online voting due to their similarity with paper-based protocols

    A multi-candidate electronic voting scheme with unlimited participants

    Full text link
    In this paper a new multi-candidate electronic voting scheme is constructed with unlimited participants. The main idea is to express a ballot to allow voting for up to k out of the m candidates and unlimited participants. The purpose of vote is to select more than one winner among mm candidates. Our result is complementary to the result by Sun peiyong′' s scheme, in the sense, their scheme is not amenable for large-scale electronic voting due to flaw of ballot structure. In our scheme the vote is split and hidden, and tallying is made for Go¨delG\ddot{o}del encoding in decimal base without any trusted third party, and the result does not rely on any traditional cryptography or computational intractable assumption. Thus the proposed scheme not only solves the problem of ballot structure, but also achieves the security including perfect ballot secrecy, receipt-free, robustness, fairness and dispute-freeness.Comment: 6 page

    Towards quantum-based privacy and voting

    Full text link
    The privacy of communicating participants is often of paramount importance, but in some situations it is an essential condition. A typical example is a fair (secret) voting. We analyze in detail communication privacy based on quantum resources, and we propose new quantum protocols. Possible generalizations that would lead to voting schemes are discussed.Comment: 5 pages, improved description of the protoco

    BVOT: Self-Tallying Boardroom Voting with Oblivious Transfer

    Get PDF
    A boardroom election is an election with a small number of voters carried out with public communications. We present BVOT, a self-tallying boardroom voting protocol with ballot secrecy, fairness (no tally information is available before the polls close), and dispute-freeness (voters can observe that all voters correctly followed the protocol). BVOT works by using a multiparty threshold homomorphic encryption system in which each candidate is associated with a masked unique prime. Each voter engages in an oblivious transfer with an untrusted distributor: the voter selects the index of a prime associated with a candidate and receives the selected prime in masked form. The voter then casts their vote by encrypting their masked prime and broadcasting it to everyone. The distributor does not learn the voter's choice, and no one learns the mapping between primes and candidates until the audit phase. By hiding the mapping between primes and candidates, BVOT provides voters with insufficient information to carry out effective cheating. The threshold feature prevents anyone from computing any partial tally---until everyone has voted. Multiplying all votes, their decryption shares, and the unmasking factor yields a product of the primes each raised to the number of votes received. In contrast to some existing boardroom voting protocols, BVOT does not rely on any zero-knowledge proof; instead, it uses oblivious transfer to assure ballot secrecy and correct vote casting. Also, BVOT can handle multiple candidates in one election. BVOT prevents cheating by hiding crucial information: an attempt to increase the tally of one candidate might increase the tally of another candidate. After all votes are cast, any party can tally the votes

    SHARVOT: secret SHARe-based VOTing on the blockchain

    Full text link
    Recently, there has been a growing interest in using online technologies to design protocols for secure electronic voting. The main challenges include vote privacy and anonymity, ballot irrevocability and transparency throughout the vote counting process. The introduction of the blockchain as a basis for cryptocurrency protocols, provides for the exploitation of the immutability and transparency properties of these distributed ledgers. In this paper, we discuss possible uses of the blockchain technology to implement a secure and fair voting system. In particular, we introduce a secret share-based voting system on the blockchain, the so-called SHARVOT protocol. Our solution uses Shamir's Secret Sharing to enable on-chain, i.e. within the transactions script, votes submission and winning candidate determination. The protocol is also using a shuffling technique, Circle Shuffle, to de-link voters from their submissions.Comment: WETSEB'18:IEEE/ACM 1st International Workshop on Emerging Trends in Software Engineering for Blockchain. 5 pages, 2 figure
    • …
    corecore