1,296 research outputs found

    An Elementary Completeness Proof for Secure Two-Party Computation Primitives

    Full text link
    In the secure two-party computation problem, two parties wish to compute a (possibly randomized) function of their inputs via an interactive protocol, while ensuring that neither party learns more than what can be inferred from only their own input and output. For semi-honest parties and information-theoretic security guarantees, it is well-known that, if only noiseless communication is available, only a limited set of functions can be securely computed; however, if interaction is also allowed over general communication primitives (multi-input/output channels), there are "complete" primitives that enable any function to be securely computed. The general set of complete primitives was characterized recently by Maji, Prabhakaran, and Rosulek leveraging an earlier specialized characterization by Kilian. Our contribution in this paper is a simple, self-contained, alternative derivation using elementary information-theoretic tools.Comment: 6 pages, extended version of ITW 2014 pape

    Black-Box Uselessness: Composing Separations in Cryptography

    Get PDF
    Black-box separations have been successfully used to identify the limits of a powerful set of tools in cryptography, namely those of black-box reductions. They allow proving that a large set of techniques are not capable of basing one primitive ? on another ?. Such separations, however, do not say anything about the power of the combination of primitives ??,?? for constructing ?, even if ? cannot be based on ?? or ?? alone. By introducing and formalizing the notion of black-box uselessness, we develop a framework that allows us to make such conclusions. At an informal level, we call primitive ? black-box useless (BBU) for ? if ? cannot help constructing ? in a black-box way, even in the presence of another primitive ?. This is formalized by saying that ? is BBU for ? if for any auxiliary primitive ?, whenever there exists a black-box construction of ? from (?,?), then there must already also exist a black-box construction of ? from ? alone. We also formalize various other notions of black-box uselessness, and consider in particular the setting of efficient black-box constructions when the number of queries to ? is below a threshold. Impagliazzo and Rudich (STOC\u2789) initiated the study of black-box separations by separating key agreement from one-way functions. We prove a number of initial results in this direction, which indicate that one-way functions are perhaps also black-box useless for key agreement. In particular, we show that OWFs are black-box useless in any construction of key agreement in either of the following settings: (1) the key agreement has perfect correctness and one of the parties calls the OWF a constant number of times; (2) the key agreement consists of a single round of interaction (as in Merkle-type protocols). We conjecture that OWFs are indeed black-box useless for general key agreement. We also show that certain techniques for proving black-box separations can be lifted to the uselessness regime. In particular, we show that the lower bounds of Canetti, Kalai, and Paneth (TCC\u2715) as well as Garg, Mahmoody, and Mohammed (Crypto\u2717 & TCC\u2717) for assumptions behind indistinguishability obfuscation (IO) can be extended to derive black-box uselessness of a variety of primitives for obtaining (approximately correct) IO. These results follow the so-called "compiling out" technique, which we prove to imply black-box uselessness. Eventually, we study the complementary landscape of black-box uselessness, namely black-box helpfulness. We put forth the conjecture that one-way functions are black-box helpful for building collision-resistant hash functions. We define two natural relaxations of this conjecture, and prove that both of these conjectures are implied by a natural conjecture regarding random permutations equipped with a collision finder oracle, as defined by Simon (Eurocrypt\u2798). This conjecture may also be of interest in other contexts, such as amplification of hardness

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page

    Formal Computational Unlinkability Proofs of RFID Protocols

    Full text link
    We set up a framework for the formal proofs of RFID protocols in the computational model. We rely on the so-called computationally complete symbolic attacker model. Our contributions are: i) To design (and prove sound) axioms reflecting the properties of hash functions (Collision-Resistance, PRF); ii) To formalize computational unlinkability in the model; iii) To illustrate the method, providing the first formal proofs of unlinkability of RFID protocols, in the computational model

    A New Cryptosystem Based On Hidden Order Groups

    Get PDF
    Let G1G_1 be a cyclic multiplicative group of order nn. It is known that the Diffie-Hellman problem is random self-reducible in G1G_1 with respect to a fixed generator gg if ϕ(n)\phi(n) is known. That is, given g,gx∈G1g, g^x\in G_1 and having oracle access to a `Diffie-Hellman Problem' solver with fixed generator gg, it is possible to compute g1/x∈G1g^{1/x} \in G_1 in polynomial time (see theorem 3.2). On the other hand, it is not known if such a reduction exists when ϕ(n)\phi(n) is unknown (see conjuncture 3.1). We exploit this ``gap'' to construct a cryptosystem based on hidden order groups and present a practical implementation of a novel cryptographic primitive called an \emph{Oracle Strong Associative One-Way Function} (O-SAOWF). O-SAOWFs have applications in multiparty protocols. We demonstrate this by presenting a key agreement protocol for dynamic ad-hoc groups.Comment: removed examples for multiparty key agreement and join protocols, since they are redundan

    Keeping Authorities "Honest or Bust" with Decentralized Witness Cosigning

    Get PDF
    The secret keys of critical network authorities - such as time, name, certificate, and software update services - represent high-value targets for hackers, criminals, and spy agencies wishing to use these keys secretly to compromise other hosts. To protect authorities and their clients proactively from undetected exploits and misuse, we introduce CoSi, a scalable witness cosigning protocol ensuring that every authoritative statement is validated and publicly logged by a diverse group of witnesses before any client will accept it. A statement S collectively signed by W witnesses assures clients that S has been seen, and not immediately found erroneous, by those W observers. Even if S is compromised in a fashion not readily detectable by the witnesses, CoSi still guarantees S's exposure to public scrutiny, forcing secrecy-minded attackers to risk that the compromise will soon be detected by one of the W witnesses. Because clients can verify collective signatures efficiently without communication, CoSi protects clients' privacy, and offers the first transparency mechanism effective against persistent man-in-the-middle attackers who control a victim's Internet access, the authority's secret key, and several witnesses' secret keys. CoSi builds on existing cryptographic multisignature methods, scaling them to support thousands of witnesses via signature aggregation over efficient communication trees. A working prototype demonstrates CoSi in the context of timestamping and logging authorities, enabling groups of over 8,000 distributed witnesses to cosign authoritative statements in under two seconds.Comment: 20 pages, 7 figure

    Distributed Differential Privacy and Applications

    Get PDF
    Recent growth in the size and scope of databases has resulted in more research into making productive use of this data. Unfortunately, a significant stumbling block which remains is protecting the privacy of the individuals that populate these datasets. As people spend more time connected to the Internet, and conduct more of their daily lives online, privacy becomes a more important consideration, just as the data becomes more useful for researchers, companies, and individuals. As a result, plenty of important information remains locked down and unavailable to honest researchers today, due to fears that data leakages will harm individuals. Recent research in differential privacy opens a promising pathway to guarantee individual privacy while simultaneously making use of the data to answer useful queries. Differential privacy is a theory that provides provable information theoretic guarantees on what any answer may reveal about any single individual in the database. This approach has resulted in a flurry of recent research, presenting novel algorithms that can compute a rich class of computations in this setting. In this dissertation, we focus on some real world challenges that arise when trying to provide differential privacy guarantees in the real world. We design and build runtimes that achieve the mathematical differential privacy guarantee in the face of three real world challenges: securing the runtimes against adversaries, enabling readers to verify that the answers are accurate, and dealing with data distributed across multiple domains
    • …
    corecore