18 research outputs found

    Optimal power control in cognitive satellite terrestrial networks with imperfect channel state information

    Get PDF
    To address the spectrum scarcity in future satellite communications, employing the cognitive technique in the satellite systems is considered as a promising candidate, which leads to an advanced architecture known as cognitive satellite terrestrial networks. Power control is a significant research challenge in cognitive satellite terrestrial networks, especially when the perfect channel state information (CSI) of satellite or terrestrial links is unavailable. In this context, we investigate the impact of imperfect CSI of both desired satellite link and harmful terrestrial interference link on the power control scheme in cognitive satellite terrestrial networks. By adopting a pilot-based channel estimation of satellite link and a back-off interference power constraint of terrestrial interference link, a novel power control scheme is presented to maximize the outage capacity of the satellite user while guaranteeing the communication quality of primary terrestrial user. Extensive numerical results quantitatively demonstrate the effect of various system parameters on the proposed power control scheme in cognitive satellite terrestrial networks with imperfect CSI

    The Role of Physical Layer Security in Satellite-Based Networks

    Full text link
    In the coming years, 6G will revolutionize the world with a large amount of bandwidth, high data rates, and extensive coverage in remote and rural areas. These goals can only be achieved by integrating terrestrial networks with non-terrestrial networks. On the other hand, these advancements are raising more concerns than other wireless links about malicious attacks on satellite-terrestrial links due to their openness. Over the years, physical layer security (PLS) has emerged as a good candidate to deal with security threats by exploring the randomness of wireless channels. In this direction, this paper reviews how PLS methods are implemented in satellite communications. Firstly, we discuss the ongoing research on satellite-based networks by highlighting the key points in the literature. Then, we revisit the research activities on PLS in satellite-based networks by categorizing the different system architectures. Finally, we highlight research directions and opportunities to leverage the PLS in future satellite-based networks

    Energy-efficient optimal power allocation in integrated wireless sensor and cognitive satellite terrestrial networks

    Get PDF
    This paper proposes novel satellite-based wireless sensor networks (WSNs), which integrate the WSN with the cognitive satellite terrestrial network. Having the ability to provide seamless network access and alleviate the spectrum scarcity, cognitive satellite terrestrial networks are considered as a promising candidate for future wireless networks with emerging requirements of ubiquitous broadband applications and increasing demand for spectral resources. With the emerging environmental and energy cost concerns in communication systems, explicit concerns on energy efficient resource allocation in satellite networks have also recently received considerable attention. In this regard, this paper proposes energy-efficient optimal power allocation schemes in the cognitive satellite terrestrial networks for non-real-time and real-time applications, respectively, which maximize the energy efficiency (EE) of the cognitive satellite user while guaranteeing the interference at the primary terrestrial user below an acceptable level. Specifically, average interference power (AIP) constraint is employed to protect the communication quality of the primary terrestrial user while average transmit power (ATP) or peak transmit power (PTP) constraint is adopted to regulate the transmit power of the satellite user. Since the energy-efficient power allocation optimization problem belongs to the nonlinear concave fractional programming problem, we solve it by combining Dinkelbach’s method with Lagrange duality method. Simulation results demonstrate that the fading severity of the terrestrial interference link is favorable to the satellite user who can achieve EE gain under the ATP constraint comparing to the PTP constraint

    Evaluation of multi-user multiple-input multiple-output digital beamforming algorithms in B5G/6G low Earth orbit satellite systems

    Get PDF
    Satellite communication systems will be a key component of 5G and 6G networks to achieve the goal of providing unlimited and ubiquitous communications and deploying smart and sustainable networks. To meet the ever-increasing demand for higher throughput in 5G and beyond, aggressive frequency reuse schemes (i.e., full frequency reuse), combined with digital beamforming techniques to cope with the massive co-channel interference, are recognized as a key solution. Aimed at (i) eliminating the joint optimization problem among the beamforming vectors of all users, (ii) splitting it into distinct ones, and (iii) finding a closed-form solution, we propose a beamforming algorithm based on maximizing the users' signal-to-leakage-and-noise ratio served by a low Earth orbit satellite. We investigate and assess the performance of several beamforming algorithms, including both those based on channel state information at the transmitter, that is, minimum mean square error and zero forcing, and those only requiring the users' locations, that is, switchable multi-beam. Through a detailed numerical analysis, we provide a thorough comparison of the performance in terms of per-user achievable spectral efficiency of the aforementioned beamforming schemes, and we show that the proposed signal to-leakage-plus-noise ratio beamforming technique is able to outperform both minimum mean square error and multi-beam schemes in the presented satellite communication scenario

    Distributed Antenna in Drone Swarms: A Feasibility Study

    Get PDF
    Unmanned aerial vehicles offer a versatile platform for the realization of phased array antenna systems, enabling multiple antenna elements to be distributed spatially in an agile, flexible, and cost-effective manner. Deploying individual antenna elements on single drones and using a swarm of such drones to create an antenna array has the potential to be a disruptive technology. Antenna directivity is limited by the physical aperture size as compared to the wavelength of the radiation being transmitted/received, with electrically larger antennas giving a higher directivity at the cost of an increased size and weight. The authors presented a brief feasibility study using a simple mathematical model implemented in software to explore the predicted performance of the novel UAV deployed antenna array, the limitations of such a system, and the potential applications where such a capability would be beneficial. The authors concluded that it is possible to achieve a suitably coherent superposition of electromagnetic radiation at frequencies of ~1 GHz and lower with current global positioning technologies which offer centimeter scale positioning accuracy and with current drone positioning systems used to control drone swarms

    A secure and energy-aware approach for cognitive radio communications

    Get PDF
    The cognitive radio (CR) technique has revealed a novel way of utilizing the precious radiospectrum via allowing unlicensed users to opportunistically access unutilized licensed bands. Using sucha technique enables agile and flexible access to the radio spectrum and can resolve the spectrum-scarcityproblem and maximize spectrum efficiency. However, two major impediments have been limiting thewidespread adoption of cognitive radio technology. The software-defined radio technology, which is theenabling technology for the CR technique, is power-hungry and this raises a major concern for battery-constrained devices such as smart phones and laptops. Secondly, the opportunistic and open nature ofthe CR can lead to major security concerns about the data being sent and how safe it is. In this paper,we introduce an energy-and-security-aware CR-based communication approach that alleviates the powerconsumption of the CR technique and enhances its security measures according to the confidentialitylevel of the data being sent. Furthermore, the proposed approach takes into account user-related factors,such as the user’s battery level and user’s data type, and network-related factors, such as the number ofunutilized bands and vulnerability level and then models the research question as a constrained optimizationproblem. Considering the time complexity of the optimum solution, we also propose a heuristic solution.We examine the proposed solution against existing solutions, and our obtained results show that theproposed approach can save energy consumption up to 18%, increase user throughput up to 20%, andachieve better spectrum utilization, up to 98%. Our proposed admission approach has the potential toopen a new research direction towards safer and greener cognitive radio techniques
    corecore