4 research outputs found

    A secure communication framework for wireless sensor networks

    Get PDF
    Today, wireless sensor networks (WSNs) are no longer a nascent technology and future networks, especially Cyber-Physical Systems (CPS) will integrate more sensor-based systems into a variety of application scenarios. Typical application areas include medical, environmental, military, and commercial enterprises. Providing security to this diverse set of sensor-based applications is necessary for the healthy operations of the overall system because untrusted entities may target the proper functioning of applications and disturb the critical decision-making processes by injecting false information into the network. One way to address this issue is to employ en-route-filtering-based solutions utilizing keys generated by either static or dynamic key management schemes in the WSN literature. However, current schemes are complicated for resource-constrained sensors as they utilize many keys and more importantly as they transmit many keying messages in the network, which increases the energy consumption of WSNs that are already severely limited in the technical capabilities and resources (i.e., power, computational capacities, and memory) available to them. Nonetheless, further improvements without too much overhead are still possible by sharing a dynamically created cryptic credential. Building upon this idea, the purpose of this thesis is to introduce an efficient and secure communication framework for WSNs. Specifically, three protocols are suggested as contributions using virtual energies and local times onboard the sensors as dynamic cryptic credentials: (1) Virtual Energy-Based Encryption and Keying (VEBEK); (2) TIme-Based DynamiC Keying and En-Route Filtering (TICK); (3) Secure Source-Based Loose Time Synchronization (SOBAS) for WSNs.Ph.D.Committee Chair: Copeland, John; Committee Co-Chair: Beyah, Raheem; Committee Member: Li, Geoffrey; Committee Member: Owen, Henry; Committee Member: Zegura, Ellen; Committee Member: Zhang, Fumi

    SALR: Secure adaptive load-balancing routing in service oriented wireless sensor networks

    Get PDF
    Congestion control and secure data transfer are the major factors that enhance the efficiency of Service Oriented Wireless Sensor Networks. It is desirable to modify the routing and security schemes adaptively in order to respond effectively to the rapidly changing Network State. Adding more complexities to the routing and security schemes increases the end-to-end delay which is not acceptable in Service Oriented WSNs which are mostly in real time. We propose an algorithm Secure Adaptive Load-Balancing Routing (SALR) protocol, in which the routing decision is taken at every hop considering the unforeseen changes in the network. Multipath selection based on Node Strength is done at every hop to decide the most secure and least congested route. The system predicts the best route rather than running the congestion detection and security schemes repeatedly. Simulation results show that security and latency performance is better than reported protocols

    DSWSD: Double Sliding Window for Secure Data Transmission in Wireless Sensor Networks

    No full text
    Synchronized secure and reliable data transfer without explicit transfer of control messages known as loose source synchronization is essential in Wireless Sensor Networks.In Secure Source-Based Loose Synchronization (SOBAS) protocol there is a possibility of interpreting the accurate data as malicious. To overcome this problem, we have introduced Double Sliding Window for Secure Data Transmission (DSWSD) algorithm in which Double window concept is used to detect malicious data accurately. Simulation results shows that, DSWSD performance is better and energy consumption is reduced in comparison with earlier works. Keywords- Double Window, False Positive Rate, Synchronization, Wireless Sensor Networks
    corecore