3,501 research outputs found

    X-Vine: Secure and Pseudonymous Routing Using Social Networks

    Full text link
    Distributed hash tables suffer from several security and privacy vulnerabilities, including the problem of Sybil attacks. Existing social network-based solutions to mitigate the Sybil attacks in DHT routing have a high state requirement and do not provide an adequate level of privacy. For instance, such techniques require a user to reveal their social network contacts. We design X-Vine, a protection mechanism for distributed hash tables that operates entirely by communicating over social network links. As with traditional peer-to-peer systems, X-Vine provides robustness, scalability, and a platform for innovation. The use of social network links for communication helps protect participant privacy and adds a new dimension of trust absent from previous designs. X-Vine is resilient to denial of service via Sybil attacks, and in fact is the first Sybil defense that requires only a logarithmic amount of state per node, making it suitable for large-scale and dynamic settings. X-Vine also helps protect the privacy of users social network contacts and keeps their IP addresses hidden from those outside of their social circle, providing a basis for pseudonymous communication. We first evaluate our design with analysis and simulations, using several real world large-scale social networking topologies. We show that the constraints of X-Vine allow the insertion of only a logarithmic number of Sybil identities per attack edge; we show this mitigates the impact of malicious attacks while not affecting the performance of honest nodes. Moreover, our algorithms are efficient, maintain low stretch, and avoid hot spots in the network. We validate our design with a PlanetLab implementation and a Facebook plugin.Comment: 15 page

    Taxonomy of P2P Applications

    Get PDF
    Peer-to-peer (p2p) networks have gained immense popularity in recent years and the number of services they provide continuously rises. Where p2p-networks were formerly known as file-sharing networks, p2p is now also used for services like VoIP and IPTV. With so many different p2p applications and services the need for a taxonomy framework rises. This paper describes the available p2p applications grouped by the services they provide. A taxonomy framework is proposed to classify old and recent p2p applications based on their characteristics

    Octopus: A Secure and Anonymous DHT Lookup

    Full text link
    Distributed Hash Table (DHT) lookup is a core technique in structured peer-to-peer (P2P) networks. Its decentralized nature introduces security and privacy vulnerabilities for applications built on top of them; we thus set out to design a lookup mechanism achieving both security and anonymity, heretofore an open problem. We present Octopus, a novel DHT lookup which provides strong guarantees for both security and anonymity. Octopus uses attacker identification mechanisms to discover and remove malicious nodes, severely limiting an adversary's ability to carry out active attacks, and splits lookup queries over separate anonymous paths and introduces dummy queries to achieve high levels of anonymity. We analyze the security of Octopus by developing an event-based simulator to show that the attacker discovery mechanisms can rapidly identify malicious nodes with low error rate. We calculate the anonymity of Octopus using probabilistic modeling and show that Octopus can achieve near-optimal anonymity. We evaluate Octopus's efficiency on Planetlab with 207 nodes and show that Octopus has reasonable lookup latency and manageable communication overhead
    • …
    corecore