125 research outputs found

    Noninteractive Verifiable Outsourcing Algorithm for Bilinear Pairing with Improved Checkability

    Get PDF
    It is well known that the computation of bilinear pairing is the most expensive operation in pairing-based cryptography. In this paper, we propose a noninteractive verifiable outsourcing algorithm of bilinear pairing based on two servers in the one-malicious model. The outsourcer need not execute any expensive operation, such as scalar multiplication and modular exponentiation. Moreover, the outsourcer could detect any failure with a probability close to 1 if one of the servers misbehaves. Therefore, the proposed algorithm improves checkability and decreases communication cost compared with the previous ones. Finally, we utilize the proposed algorithm as a subroutine to achieve an anonymous identity-based encryption (AIBE) scheme with outsourced decryption and an identity-based signature (IBS) scheme with outsourced verification

    Energy-efficient secure outsourcing decryption of attribute based encryption for mobile device in cloud computation

    Get PDF
    This is a copy of the author 's final draft version of an article published in the "Journal of ambient intelligence and humanized computing". The final publication is available at Springer via http://dx.doi.org/10.1007/s12652-017-0658-2In this paper two new ways for efficient secure outsourcing the decryption of key-policy attribute-based encryption (KP-ABE) with energy efficiency are proposed. Based on an observation about the permutation property of the access structure for the attribute based encryption schemes, we propose a high efficient way for outsourcing the decryption of KP-ABE, which is suitable for being used in mobile devices. But it can only be used for the ABE schemes having tree-like access structure for the self-enclosed system. The second way is motivated from the fact that almost all the previous work on outsourcing the decryption of KP-ABE cares little about the ciphertext length. Almost all the previous schemes for secure outsourcing the decryption of ABE have linear length ciphertext with the attributes or the policy. But transferring so long ciphertexts via wireless network for mobile phone can easily run out of battery power, therefore it can not be adapted to practical application scenarios. Thus another new scheme for outsourcing the decryption of ABE but with constant-size ciphertexts is proposed. Furthermore, our second proposal gives a new efficient way for secure outsourcing the decryptor’s secret key to the cloud, which need only one modular exponentiation while all the previous schemes need many. We evaluate the efficiency of our proposals and the results show that our proposals are practical.Peer ReviewedPostprint (author's final draft

    Identity-Based Proxy-Oriented Data Uploading and Remote Data Integrity Checking in Public Cloud

    Get PDF
    More and more clients would like to store their data to public cloud servers (PCSs) along with the rapid development of cloud computing. New security problems have to be solved in order to help more clients process their data in public cloud. When the client is restricted to access PCS, he will delegate its proxy to process his data and upload them. On the other hand, remote data integrity checking is also an important security problem in public cloud storage. It makes the clients check whether their outsourced data are kept intact without downloading the whole data. From the security problems, we propose a novel proxy-oriented data uploading and remote data integrity checking model in identity-based public key cryptography: identity-based proxy-oriented data uploading and remote data integrity checking in public cloud (ID-PUIC). We give the formal definition, system model, and security model. Then, a concrete ID-PUIC protocol is designed using the bilinear pairings. The proposed ID-PUIC protocol is provably secure based on the hardness of computational Diffie–Hellman problem. Our ID-PUIC protocol is also efficient and flexible. Based on the original client’s authorization, the proposed ID-PUIC protocol can realize private remote data integrity checking, delegated remote data integrity checking, and public remote data integrity checking

    Attribute-based encryption for cloud computing access control: A survey

    Get PDF
    National Research Foundation (NRF) Singapore; AXA Research Fun

    Authentication under Constraints

    Get PDF
    Authentication has become a critical step to gain access to services such as on-line banking, e-commerce, transport systems and cars (contact-less keys). In several cases, however, the authentication process has to be performed under challenging conditions. This thesis is essentially a compendium of five papers which are the result of a two-year study on authentication in constrained settings. The two major constraints considered in this work are: (1) the noise and (2) the computational power. For what concerns authentication under noisy conditions, Paper A and Paper B ad- dress the case in which the noise is in the authentication credentials. More precisely, the aforementioned papers present attacks against biometric authentication systems, that exploit the inherent variant nature of biometric traits to gain information that should not be leaked by the system. Paper C and Paper D study proximity- based authentication, i.e., distance-bounding protocols. In this case, both of the constraints are present: the possible presence of noise in the channel (which affects communication and thus the authentication process), as well as resource constraints on the computational power and the storage space of the authenticating party (called the prover, e.g., an RFID tag). Finally, Paper E investigates how to achieve reliable verification of the authenticity of a digital signature, when the verifying party has limited computational power, and thus offloads part of the computations to an untrusted server. Throughout the presented research work, a special emphasis is given to privacy concerns risen by the constrained conditions

    Attribute-based encryption with verifiable outsourced decryption

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier 1; Singapore Management University; Agency for Science, Technology and Research (A*STAR) SERC Gran

    Fog based Secure Framework for Personal Health Records Systems

    Get PDF
    The rapid development of personal health records (PHR) systems enables an individual to collect, create, store and share his PHR to authorized entities. Health care systems within the smart city environment require a patient to share his PRH data with a multitude of institutions' repositories located in the cloud. The cloud computing paradigm cannot meet such a massive transformative healthcare systems due to drawbacks including network latency, scalability and bandwidth. Fog computing relieves the burden of conventional cloud computing by availing intermediate fog nodes between the end users and the remote servers. Aiming at a massive demand of PHR data within a ubiquitous smart city, we propose a secure and fog assisted framework for PHR systems to address security, access control and privacy concerns. Built under a fog-based architecture, the proposed framework makes use of efficient key exchange protocol coupled with ciphertext attribute based encryption (CP-ABE) to guarantee confidentiality and fine-grained access control within the system respectively. We also make use of digital signature combined with CP-ABE to ensure the system authentication and users privacy. We provide the analysis of the proposed framework in terms of security and performance.Comment: 12 pages (CMC Journal, Tech Science Press
    • …
    corecore