1,515 research outputs found

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Source-destination obfuscation in wireless ad hocnetworks

    Get PDF
    The identity and/or location of communicating entities in wireless ad hocnetworks is extremely important due to the potential of their being identified and subsequently subjected to cyber or physical attacks. In this paper, we show that a global attacker who can eavesdrop on the overall data transmissions and count them can simply visualize the transmissions and infer contextual information. Current approaches to obfuscate the locations of source and destinations do not provide protection against such attacks. We propose two novel techniques (1) SECLOUD: Source and Destination Seclusion using Clouds to obfuscate the true source/destination nodes and make them indistinguishable among a group of neighbor nodes, and (2) ANONYRING: Anonymous Ring which hides the source/destination nodes within a group of nodes that form a ring. Both proposed techniques work well even under network-wide traffic visualization by a global attacker. Furthermore the proposed techniques are shown viasimulation to be superior to existing schemes in the literature. © 2010 John Wiley & Sons, Ltd

    Visualization of Wormholes in Sensor Networks

    Get PDF
    Several protocols have been proposed to defend against wormholes in ad hoc networks by adopting positioning devices, synchronized clocks, or directional antennas. In this paper, we propose a mechanism, MDS-VOW, to detect wormholes in a sensor network. MDS-VOW first reconstructs the layout of the sensors using multi-dimensional scaling. To compensate the distortions caused by distance measurement errors, a surface smoothing scheme is adopted. MDS-VOW then detects the wormhole by visualizing the anomalies introduced by the attack. The anomalies, which are caused by the fake connections through the wormhole, bend the reconstructed surface to pull the sensors that are faraway to each other. Through detecting the bending feature, the wormhole is located and the fake connections are identified. The contributions of MDS-VOW are: (1) it does not require the sensors to be equipped with special hardware, (2) it adopts and combines the techniques from social science, computer graphics, and scientific visualization to attack the problem in network security. We examine the accuracy of the proposed mechanism when the sensors are deployed in a circle area and one wormhole exists in the network. The results show that MDS-VOW has a low false alarm ratio when the distance measurement errors are not large

    Secure neighborhood creation in wireless ad hoc networks using hop count discrepancies

    Get PDF
    A fundamental requirement for nodes in ad hoc and sensor networks is the ability to correctly determine their neighborhood. Many applications, protocols, and network wide functions rely on correct neighborhood discovery. Malicious nodes that taint neighborhood information using wormholes can significantly disrupt the operation of ad hoc networks. Protocols that depend only on cryptographic techniques (e.g, authentication and encryption) may not be able to detect or prevent such attacks. In this paper we propose SECUND, a protocol for creating a SECUre NeighborhooD, that makes use of discrepancies in routing hop count information to detect "true" neighbors and remove those links to nodes that appear to be neighbors, but are not really neighbors. SECUND is simple, localized and needs no special hardware, localization, or synchronization. We evaluate SECUND using simulations and demonstrate its effectiveness in the presence of multiple and multi-ended wormholes. Lastly, we present approaches to improve the efficiency of the SECUND process. © Springer Science+Business Media, LLC 2010

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    Routing Security Issues in Wireless Sensor Networks: Attacks and Defenses

    Get PDF
    Wireless Sensor Networks (WSNs) are rapidly emerging as an important new area in wireless and mobile computing research. Applications of WSNs are numerous and growing, and range from indoor deployment scenarios in the home and office to outdoor deployment scenarios in adversary's territory in a tactical battleground (Akyildiz et al., 2002). For military environment, dispersal of WSNs into an adversary's territory enables the detection and tracking of enemy soldiers and vehicles. For home/office environments, indoor sensor networks offer the ability to monitor the health of the elderly and to detect intruders via a wireless home security system. In each of these scenarios, lives and livelihoods may depend on the timeliness and correctness of the sensor data obtained from dispersed sensor nodes. As a result, such WSNs must be secured to prevent an intruder from obstructing the delivery of correct sensor data and from forging sensor data. To address the latter problem, end-to-end data integrity checksums and post-processing of senor data can be used to identify forged sensor data (Estrin et al., 1999; Hu et al., 2003a; Ye et al., 2004). The focus of this chapter is on routing security in WSNs. Most of the currently existing routing protocols for WSNs make an optimization on the limited capabilities of the nodes and the application-specific nature of the network, but do not any the security aspects of the protocols. Although these protocols have not been designed with security as a goal, it is extremely important to analyze their security properties. When the defender has the liabilities of insecure wireless communication, limited node capabilities, and possible insider threats, and the adversaries can use powerful laptops with high energy and long range communication to attack the network, designing a secure routing protocol for WSNs is obviously a non-trivial task.Comment: 32 pages, 5 figures, 4 tables 4. arXiv admin note: substantial text overlap with arXiv:1011.152

    Detection of Hidden Wormhole Attack in Wireless Sensor Networks using Neighborhood and Connectivity Information

    Get PDF
    Wireless sensor networks (WSNs) have inspired many applications such as military applications, environmental monitoring and other fields. WSN has emergence in various fields, so security is very important issue for sensor networks. Security comes from attacks. Due to the wireless and distributed nature anyone can connect with the network. Among all possible attacks, wormholes are very hard to detect because they can cause damage to the network without knowing the protocols used in the network. It is a powerful attack that can be conducted without requiring any cryptographic breaks. Wormholes are hard to detect because they use a private, out-of-band channel invisible to the underlying sensor network. In this paper we have proposed a wormhole detection protocol based on neighborhood and connectivity information. Performance analysis shows that our proposed approach can effectively detect wormhole attack with less storage cost. Keywords: Wireless sensor network, wormhole, out-of-band, security, neighborhood
    corecore