8 research outputs found

    Secure Massive MIMO Communication with Low-resolution DACs

    Full text link
    In this paper, we investigate secure transmission in a massive multiple-input multiple-output (MIMO) system adopting low-resolution digital-to-analog converters (DACs). Artificial noise (AN) is deliberately transmitted simultaneously with the confidential signals to degrade the eavesdropper's channel quality. By applying the Bussgang theorem, a DAC quantization model is developed which facilitates the analysis of the asymptotic achievable secrecy rate. Interestingly, for a fixed power allocation factor Ï•\phi, low-resolution DACs typically result in a secrecy rate loss, but in certain cases they provide superior performance, e.g., at low signal-to-noise ratio (SNR). Specifically, we derive a closed-form SNR threshold which determines whether low-resolution or high-resolution DACs are preferable for improving the secrecy rate. Furthermore, a closed-form expression for the optimal Ï•\phi is derived. With AN generated in the null-space of the user channel and the optimal Ï•\phi, low-resolution DACs inevitably cause secrecy rate loss. On the other hand, for random AN with the optimal Ï•\phi, the secrecy rate is hardly affected by the DAC resolution because the negative impact of the quantization noise can be compensated for by reducing the AN power. All the derived analytical results are verified by numerical simulations.Comment: 14 pages, 10 figure

    Secure Communication for Spatially Sparse Millimeter-Wave Massive MIMO Channels via Hybrid Precoding

    Get PDF
    In this paper, we investigate secure communication over sparse millimeter-wave (mm-Wave) massive multiple-input multiple-output (MIMO) channels by exploiting the spatial sparsity of legitimate user's channel. We propose a secure communication scheme in which information data is precoded onto dominant angle components of the sparse channel through a limited number of radio-frequency (RF) chains, while artificial noise (AN) is broadcast over the remaining nondominant angles interfering only with the eavesdropper with a high probability. It is shown that the channel sparsity plays a fundamental role analogous to secret keys in achieving secure communication. Hence, by defining two statistical measures of the channel sparsity, we analytically characterize its impact on secrecy rate. In particular, a substantial improvement on secrecy rate can be obtained by the proposed scheme due to the uncertainty, i.e., 'entropy', introduced by the channel sparsity which is unknown to the eavesdropper. It is revealed that sparsity in the power domain can always contribute to the secrecy rate. In contrast, in the angle domain, there exists an optimal level of sparsity that maximizes the secrecy rate. The effectiveness of the proposed scheme and derived results are verified by numerical simulations

    Secure Massive MIMO Communication with Low-Resolution DACs

    No full text

    Secure Massive MIMO Communication With Low-Resolution DACs

    No full text
    corecore