1,039 research outputs found

    An Authentication Protocol for Future Sensor Networks

    Full text link
    Authentication is one of the essential security services in Wireless Sensor Networks (WSNs) for ensuring secure data sessions. Sensor node authentication ensures the confidentiality and validity of data collected by the sensor node, whereas user authentication guarantees that only legitimate users can access the sensor data. In a mobile WSN, sensor and user nodes move across the network and exchange data with multiple nodes, thus experiencing the authentication process multiple times. The integration of WSNs with Internet of Things (IoT) brings forth a new kind of WSN architecture along with stricter security requirements; for instance, a sensor node or a user node may need to establish multiple concurrent secure data sessions. With concurrent data sessions, the frequency of the re-authentication process increases in proportion to the number of concurrent connections, which makes the security issue even more challenging. The currently available authentication protocols were designed for the autonomous WSN and do not account for the above requirements. In this paper, we present a novel, lightweight and efficient key exchange and authentication protocol suite called the Secure Mobile Sensor Network (SMSN) Authentication Protocol. In the SMSN a mobile node goes through an initial authentication procedure and receives a re-authentication ticket from the base station. Later a mobile node can use this re-authentication ticket when establishing multiple data exchange sessions and/or when moving across the network. This scheme reduces the communication and computational complexity of the authentication process. We proved the strength of our protocol with rigorous security analysis and simulated the SMSN and previously proposed schemes in an automated protocol verifier tool. Finally, we compared the computational complexity and communication cost against well-known authentication protocols.Comment: This article is accepted for the publication in "Sensors" journal. 29 pages, 15 figure

    Towards NFC payments using a lightweight architecture for the Web of Things

    Get PDF
    The Web (and Internet) of Things has seen the rapid emergence of new protocols and standards, which provide for innovative models of interaction for applications. One such model fostered by the Web of Things (WoT) ecosystem is that of contactless interaction between devices. Near Field Communication (NFC) technology is one such enabler of contactless interactions. Contactless technology for the WoT requires all parties to agree one common definition and implementation and, in this paper, we propose a new lightweight architecture for the WoT, based on RESTful approaches. We show how the proposed architecture supports the concept of a mobile wallet, enabling users to make secure payments employing NFC technology with their mobile devices. In so doing, we argue that the vision of the WoT is brought a step closer to fruition

    LDAKM-EIoT: Lightweight Device Authentication and Key Management Mechanism for Edge-Based IoT Deployment

    Get PDF
    In recent years, edge computing has emerged as a new concept in the computing paradigm that empowers several future technologies, such as 5G, vehicle-to-vehicle communications, and the Internet of Things (IoT), by providing cloud computing facilities, as well as services to the end users. However, open communication among the entities in an edge based IoT environment makes it vulnerable to various potential attacks that are executed by an adversary. Device authentication is one of the prominent techniques in security that permits an IoT device to authenticate mutually with a cloud server with the help of an edge node. If authentication is successful, they establish a session key between them for secure communication. To achieve this goal, a novel device authentication and key management mechanism for the edge based IoT environment, called the lightweight authentication and key management scheme for the edge based IoT environment (LDAKM-EIoT), was designed. The detailed security analysis and formal security verification conducted by the widely used Automated Validation of Internet Security Protocols and Applications (AVISPA) tool prove that the proposed LDAKM-EIoT is secure against several attack vectors that exist in the infrastructure of the edge based IoT environment. The elaborated comparative analysis of the proposed LDAKM-EIoT and different closely related schemes provides evidence that LDAKM-EIoT is more secure with less communication and computation costs. Finally, the network performance parameters are calculated and analyzed using the NS2 simulation to demonstrate the practical facets of the proposed LDAKM-EIoT

    Lightweight Three-Factor Authentication and Key Agreement Protocol for Internet-Integrated Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) will be integrated into the future Internet as one of the components of the Internet of Things, and will become globally addressable by any entity connected to the Internet. Despite the great potential of this integration, it also brings new threats, such as the exposure of sensor nodes to attacks originating from the Internet. In this context, lightweight authentication and key agreement protocols must be in place to enable end-to-end secure communication. Recently, Amin et al. proposed a three-factor mutual authentication protocol for WSNs. However, we identified several flaws in their protocol. We found that their protocol suffers from smart card loss attack where the user identity and password can be guessed using offline brute force techniques. Moreover, the protocol suffers from known session-specific temporary information attack, which leads to the disclosure of session keys in other sessions. Furthermore, the protocol is vulnerable to tracking attack and fails to fulfill user untraceability. To address these deficiencies, we present a lightweight and secure user authentication protocol based on the Rabin cryptosystem, which has the characteristic of computational asymmetry. We conduct a formal verification of our proposed protocol using ProVerif in order to demonstrate that our scheme fulfills the required security properties. We also present a comprehensive heuristic security analysis to show that our protocol is secure against all the possible attacks and provides the desired security features. The results we obtained show that our new protocol is a secure and lightweight solution for authentication and key agreement for Internet-integrated WSNs

    An analyzing process on wireless protection criteria focusing on (WPA) within computer network security

    Get PDF
    Network security from a long ago approaches to cryptography and hash functions which are tremendous and due to the weakness of different vulnerabilities in the networks and obviously there is a significant need for analyzes. In this manuscript, the state-of-the-art wireless environment is focused solely on the sensor technology, in which security needs to be integrated with the Wireless Protected Access (WPA) standards. Wireless networking includes numerous points of view from wireless sensor systems, ad hoc mobile devices, Wi-Max and many more. The authentication and dynamic encryption is modified by system managers so that general communication can be anchored without any sniper effort in order to perform higher degrees of security and overall execution. The key exchange mechanism in wireless systems such as forward cases is accompanied by the sophisticated cryptography so as to anchor the whole computer state. The manuscript carries out a significant audit of test points of view using the methodologies used for the cryptography angle for protection and honesty in the wireless case, stressing Wi-Fi Secure Protected (WPA) needs

    Security in 5G-Enabled Internet of Things Communication: Issues: Challenges, and Future Research Roadmap

    Get PDF
    5G mobile communication systems promote the mobile network to not only interconnect people, but also interconnect and control the machine and other devices. 5G-enabled Internet of Things (IoT) communication environment supports a wide-variety of applications, such as remote surgery, self-driving car, virtual reality, flying IoT drones, security and surveillance and many more. These applications help and assist the routine works of the community. In such communication environment, all the devices and users communicate through the Internet. Therefore, this communication agonizes from different types of security and privacy issues. It is also vulnerable to different types of possible attacks (for example, replay, impersonation, password reckoning, physical device stealing, session key computation, privileged-insider, malware, man-in-the-middle, malicious routing, and so on). It is then very crucial to protect the infrastructure of 5G-enabled IoT communication environment against these attacks. This necessitates the researchers working in this domain to propose various types of security protocols under different types of categories, like key management, user authentication/device authentication, access control/user access control and intrusion detection. In this survey paper, the details of various system models (i.e., network model and threat model) required for 5G-enabled IoT communication environment are provided. The details of security requirements and attacks possible in this communication environment are further added. The different types of security protocols are also provided. The analysis and comparison of the existing security protocols in 5G-enabled IoT communication environment are conducted. Some of the future research challenges and directions in the security of 5G-enabled IoT environment are displayed. The motivation of this work is to bring the details of different types of security protocols in 5G-enabled IoT under one roof so that the future researchers will be benefited with the conducted work

    Efficient Authentication Algorithm for Secure Remote Access in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks convey mission critical data that calls for adequate privacy and security protection. To accomplish this objective, numerous intrusion detection schemes based on machine learning approaches have been developed. In addition, authentication and key agreements techniques have been developed using techniques such as elliptic curve cryptography, bilinear pairing operations, biometrics, fuzzy verifier and Rabin cryptosystems. However, these schemes have either high false positive rates, high communication, computation, storage or energy requirements, all of which are not ideal for battery powered sensor nodes. Moreover, majority of these algorithms still have some security and privacy challenges that render them susceptible to various threats. In this paper, a WSN authentication algorithm is presented that is shown to be robust against legacy WSN privacy and security attacks such as sidechannel, traceability, offline guessing, replay and impersonations. From a performance perspective, the proposed algorithm requires the least computation overheads and average computation costs among its peers
    • …
    corecore