4,896 research outputs found

    Image encryption system based on a nonlinear joint transform correlator for the simultaneous authentication of two users

    Get PDF
    We propose a new encryption system based on a nonlinear joint transform correlator (JTC) using the information of two biometrics (one digital fingerprint for each user) as security keys of the encryption system. In order to perform the decryption and authentication in a proper way, it is necessary to have the two digital fingerprints from the respective users whose simultaneous authentication is pursued. The proposed security system is developed in the Fourier domain. The nonlinearity of the JTC along with the five security keys given by the three random phase masks and the two digital fingerprints of the two users allow an increase of the system security against brute force and plaintext attacks. The feasibility and validity of this proposal is demonstrated using digital fingerprints as biometrics in numerical experiments.Peer ReviewedPostprint (published version

    Anonymous subject identification and privacy information management in video surveillance

    Get PDF
    The widespread deployment of surveillance cameras has raised serious privacy concerns, and many privacy-enhancing schemes have been recently proposed to automatically redact images of selected individuals in the surveillance video for protection. Of equal importance are the privacy and efficiency of techniques to first, identify those individuals for privacy protection and second, provide access to original surveillance video contents for security analysis. In this paper, we propose an anonymous subject identification and privacy data management system to be used in privacy-aware video surveillance. The anonymous subject identification system uses iris patterns to identify individuals for privacy protection. Anonymity of the iris-matching process is guaranteed through the use of a garbled-circuit (GC)-based iris matching protocol. A novel GC complexity reduction scheme is proposed by simplifying the iris masking process in the protocol. A user-centric privacy information management system is also proposed that allows subjects to anonymously access their privacy information via their iris patterns. The system is composed of two encrypted-domain protocols: The privacy information encryption protocol encrypts the original video records using the iris pattern acquired during the subject identification phase; the privacy information retrieval protocol allows the video records to be anonymously retrieved through a GC-based iris pattern matching process. Experimental results on a public iris biometric database demonstrate the validity of our framework

    Single-random phase encoding architecture using a focus tunable lens

    Get PDF
    We propose a new nonlinear optical architecture based on a focus tunable lens and an iterative phase retrieval algorithm. It constitutes a compact encryption system that uses a single-random phase key to simultaneously encrypt (decrypt) amplitude and phase data. Summarily, the information encoded in a transmittance object (phase and amplitude) is randomly modulated by a diffuser when a laser beam illuminates it; once the beam reaches a focus tunable lens, different subjective speckle distributions are registered at some image plane as the focal length is tuned to different values. This set of speckle patterns constitutes a delocalized ciphertext, which is used in an iterative phase retrieval algorithm to reconstruct a complex ciphertext. The original data are decrypted propagating this ciphertext through a virtual optical system. In this system, amplitude data are straightforwardly decrypted while phase data can only be restored if the random modulation produced in the encryption process is compensated. Thus, an encryption-decryption process and authentication protocol can simultaneously be performed. We validate the feasibility of our proposal with simulated and experimental results.Fil: Mosso Solano, Edward Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Pontificia Universidad Católica de Valparaíso; ChileFil: Bolognini, Nestor Alberto. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; ArgentinaFil: Pérez, D.G.. Pontificia Universidad Católica de Valparaíso; Chil
    corecore