3,871 research outputs found

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Data Access for LIGO on the OSG

    Full text link
    During 2015 and 2016, the Laser Interferometer Gravitational-Wave Observatory (LIGO) conducted a three-month observing campaign. These observations delivered the first direct detection of gravitational waves from binary black hole mergers. To search for these signals, the LIGO Scientific Collaboration uses the PyCBC search pipeline. To deliver science results in a timely manner, LIGO collaborated with the Open Science Grid (OSG) to distribute the required computation across a series of dedicated, opportunistic, and allocated resources. To deliver the petabytes necessary for such a large-scale computation, our team deployed a distributed data access infrastructure based on the XRootD server suite and the CernVM File System (CVMFS). This data access strategy grew from simply accessing remote storage to a POSIX-based interface underpinned by distributed, secure caches across the OSG.Comment: 6 pages, 3 figures, submitted to PEARC1

    Cache-Aided Non-Orthogonal Multiple Access

    Full text link
    In this paper, we propose a novel joint caching and non-orthogonal multiple access (NOMA) scheme to facilitate advanced downlink transmission for next generation cellular networks. In addition to reaping the conventional advantages of caching and NOMA transmission, the proposed cache-aided NOMA scheme also exploits cached data for interference cancellation which is not possible with separate caching and NOMA transmission designs. Furthermore, as caching can help to reduce the residual interference power, several decoding orders are feasible at the receivers, and these decoding orders can be flexibly selected for performance optimization. We characterize the achievable rate region of cache-aided NOMA and investigate its benefits for minimizing the time required to complete video file delivery. Our simulation results reveal that, compared to several baseline schemes, the proposed cache-aided NOMA scheme significantly expands the achievable rate region for downlink transmission, which translates into substantially reduced file delivery times.Comment: Accepted for presentation at IEEE ICC 201
    • …
    corecore