82 research outputs found

    Spatially Selective Artificial-Noise Aided Transmit Optimization for MISO Multi-Eves Secrecy Rate Maximization

    Full text link
    Consider an MISO channel overheard by multiple eavesdroppers. Our goal is to design an artificial noise (AN)-aided transmit strategy, such that the achievable secrecy rate is maximized subject to the sum power constraint. AN-aided secure transmission has recently been found to be a promising approach for blocking eavesdropping attempts. In many existing studies, the confidential information transmit covariance and the AN covariance are not simultaneously optimized. In particular, for design convenience, it is common to prefix the AN covariance as a specific kind of spatially isotropic covariance. This paper considers joint optimization of the transmit and AN covariances for secrecy rate maximization (SRM), with a design flexibility that the AN can take any spatial pattern. Hence, the proposed design has potential in jamming the eavesdroppers more effectively, based upon the channel state information (CSI). We derive an optimization approach to the SRM problem through both analysis and convex conic optimization machinery. We show that the SRM problem can be recast as a single-variable optimization problem, and that resultant problem can be efficiently handled by solving a sequence of semidefinite programs. Our framework deals with a general setup of multiple multi-antenna eavesdroppers, and can cater for additional constraints arising from specific application scenarios, such as interference temperature constraints in interference networks. We also generalize the framework to an imperfect CSI case where a worst-case robust SRM formulation is considered. A suboptimal but safe solution to the outage-constrained robust SRM design is also investigated. Simulation results show that the proposed AN-aided SRM design yields significant secrecy rate gains over an optimal no-AN design and the isotropic AN design, especially when there are more eavesdroppers.Comment: To appear in IEEE Trans. Signal Process., 201

    Transmitter Optimization Techniques for Physical Layer Security

    Get PDF
    Information security is one of the most critical issues in wireless networks as the signals transmitted through wireless medium are more vulnerable for interception. Although the existing conventional security techniques are proven to be safe, the broadcast nature of wireless communications introduces different challenges in terms of key exchange and distributions. As a result, information theoretic physical layer security has been proposed to complement the conventional security techniques for enhancing security in wireless transmissions. On the other hand, the rapid growth of data rates introduces different challenges on power limited mobile devices in terms of energy requirements. Recently, research work on wireless power transfer claimed that it has been considered as a potential technique to extend the battery lifetime of wireless networks. However, the algorithms developed based on the conventional optimization approaches often require iterative techniques, which poses challenges for real-time processing. To meet the demanding requirements of future ultra-low latency and reliable networks, neural network (NN) based approach can be employed to determine the resource allocations in wireless communications. This thesis developed different transmission strategies for secure transmission in wireless communications. Firstly, transmitter designs are focused in a multiple-input single-output simultaneous wireless information and power transfer system with unknown eavesdroppers. To improve the performance of physical layer security and the harvested energy, artificial noise is incorporated into the network to mask the secret information between the legitimate terminals. Then, different secrecy energy efficiency designs are considered for a MISO underlay cognitive radio network, in the presence of an energy harvesting receiver. In particular, these designs are developed with different channel state information assumptions at the transmitter. Finally, two different power allocation designs are investigated for a cognitive radio network to maximize the secrecy rate of the secondary receiver: conventional convex optimization framework and NN based algorithm

    Outage Constrained Robust Secure Transmission for MISO Wiretap Channels

    Full text link
    In this paper we consider the robust secure beamformer design for MISO wiretap channels. Assume that the eavesdroppers' channels are only partially available at the transmitter, we seek to maximize the secrecy rate under the transmit power and secrecy rate outage probability constraint. The outage probability constraint requires that the secrecy rate exceeds certain threshold with high probability. Therefore including such constraint in the design naturally ensures the desired robustness. Unfortunately, the presence of the probabilistic constraints makes the problem non-convex and hence difficult to solve. In this paper, we investigate the outage probability constrained secrecy rate maximization problem using a novel two-step approach. Under a wide range of uncertainty models, our developed algorithms can obtain high-quality solutions, sometimes even exact global solutions, for the robust secure beamformer design problem. Simulation results are presented to verify the effectiveness and robustness of the proposed algorithms

    Optimal and Robust Transmit Designs for MISO Channel Secrecy by Semidefinite Programming

    Full text link
    In recent years there has been growing interest in study of multi-antenna transmit designs for providing secure communication over the physical layer. This paper considers the scenario of an intended multi-input single-output channel overheard by multiple multi-antenna eavesdroppers. Specifically, we address the transmit covariance optimization for secrecy-rate maximization (SRM) of that scenario. The challenge of this problem is that it is a nonconvex optimization problem. This paper shows that the SRM problem can actually be solved in a convex and tractable fashion, by recasting the SRM problem as a semidefinite program (SDP). The SRM problem we solve is under the premise of perfect channel state information (CSI). This paper also deals with the imperfect CSI case. We consider a worst-case robust SRM formulation under spherical CSI uncertainties, and we develop an optimal solution to it, again via SDP. Moreover, our analysis reveals that transmit beamforming is generally the optimal transmit strategy for SRM of the considered scenario, for both the perfect and imperfect CSI cases. Simulation results are provided to illustrate the secrecy-rate performance gains of the proposed SDP solutions compared to some suboptimal transmit designs.Comment: 32 pages, 5 figures; to appear, IEEE Transactions on Signal Processing, 201

    Weighted Sum Secrecy Rate Maximization using Intelligent Reflecting Surface

    Get PDF
    This paper aims to investigate the benefit of using intelligent reflecting surface (IRS) in multi-user multiple-input single-output (MU-MISO) systems, in the presence of eavesdroppers. We maximize the weighted sum secrecy rate by jointly designing the secure beamforming (BF), the artificial noise (AN), as well as the phase shift of the IRS. An alternating optimization (AO) method is proposed to deal with the formulated non convex problem. In particular, the secure beamforming and AN jamming matrix are optimally designed via the successive convex approximation (SCA) approach for given phase shift, which can be derived by considering the alternating direction method of multiplier (ADMM) and element-wise block coordinate decent (EBCD) methods. Finally, simulation results are presented to show the benefit of the IRS in terms of improving the secrecy performance, when compared to other methods

    Joint Information and Jamming Beamforming for Secrecy Rate Maximization in Cognitive Radio Networks

    Get PDF
    In this paper, we consider the secure beamforming design for an underlay cognitive radio multiple-input singleoutput broadcast channel in the presence of multiple passive eavesdroppers. Our goal is to design a jamming noise (JN) transmit strategy to maximize the secrecy rate of the secondary system. By utilizing the zero-forcing method to eliminate the interference caused by JN to the secondary user, we study the joint optimization of the information and JN beamforming for secrecy rate maximization of the secondary system while satisfying all the interference power constraints at the primary users, as well as the per-antenna power constraint at the secondary transmitter. For an optimal beamforming design, the original problem is a nonconvex program, which can be reformulated as a convex program by applying the rank relaxation method. To this end, we prove that the rank relaxation is tight and propose a barrier interior-point method to solve the resulting saddle point problem based on a duality result. To find the global optimal solution, we transform the considered problem into an unconstrained optimization problem. We then employ Broyden-Fletcher-Goldfarb-Shanno (BFGS) method to solve the resulting unconstrained problem which helps reduce the complexity significantly, compared to conventional methods. Simulation results show the fast convergence of the proposed algorithm and substantial performance improvements over existing approaches
    • …
    corecore