691 research outputs found

    Power Allocation in Multiuser Parallel Gaussian Broadcast Channels With Common and Confidential Messages

    Get PDF
    We consider a broadcast communication over parallel channels, where the transmitter sends K+1 messages: one common message to all users, and K confidential messages to each user, which need to be kept secret from all unintended users. We assume partial channel state information at the transmitter, stemming from noisy channel estimation. Our main goal is to design a power allocation algorithm in order to maximize the weighted sum rate of common and confidential messages under a total power constraint. The resulting problem for joint encoding across channels is formulated as the cascade of two problems, the inner min problem being discrete, and the outer max problem being convex. Thereby, efficient algorithms for this kind of optimization program can be used as solutions to our power allocation problem. For the special case K=2 , we provide an almost closed-form solution, where only two single variables must be optimized, e.g., through dichotomic searches. To reduce computational complexity, we propose three new algorithms, maximizing the weighted sum rate achievable by two suboptimal schemes that perform per-user and per-channel encoding. By numerical results, we assess the performance of all proposed algorithms as a function of different system parameters

    Physical-Layer Security Over Non-Small-Scale Fading Channels

    Get PDF

    Efficient Wireless Security Through Jamming, Coding and Routing

    Full text link
    There is a rich recent literature on how to assist secure communication between a single transmitter and receiver at the physical layer of wireless networks through techniques such as cooperative jamming. In this paper, we consider how these single-hop physical layer security techniques can be extended to multi-hop wireless networks and show how to augment physical layer security techniques with higher layer network mechanisms such as coding and routing. Specifically, we consider the secure minimum energy routing problem, in which the objective is to compute a minimum energy path between two network nodes subject to constraints on the end-to-end communication secrecy and goodput over the path. This problem is formulated as a constrained optimization of transmission power and link selection, which is proved to be NP-hard. Nevertheless, we show that efficient algorithms exist to compute both exact and approximate solutions for the problem. In particular, we develop an exact solution of pseudo-polynomial complexity, as well as an epsilon-optimal approximation of polynomial complexity. Simulation results are also provided to show the utility of our algorithms and quantify their energy savings compared to a combination of (standard) security-agnostic minimum energy routing and physical layer security. In the simulated scenarios, we observe that, by jointly optimizing link selection at the network layer and cooperative jamming at the physical layer, our algorithms reduce the network energy consumption by half

    Physical layer security in power line communication networks: an emerging scenario, other than wireless

    Get PDF
    The authors consider the secure transmission of information over power line communication (PLC) networks. The focus is on the secrecy guaranteed at the physical layer, named physical layer security (PLS). Although PLS has been deeply investigated for the wireless case, it is not the same for the PLC environment. Thus, starting from the knowledge in the wireless context, the authors extend the results to typical PLC scenarios. In particular, the PLC channel statistics is evaluated and a performance comparison among PLC and wireless channels is performed, in terms of secrecy rate distribution. For the PLC case, the secrecy rate distribution, under a total power constraint, is evaluated for both optimal and uniform power distributions in broadband channels. To provide experimental evidence, the authors consider channel measures obtained in an in-home measurement campaign. The underlying network presents a tree topology, which introduces frequency and spatial correlation among channels, and suffers from the keyhole effect, generated by branches that depart from the same node. As shown by the numerical results, these effects can reduce the secrecy rate. Finally, the authors evaluate the secrecy rate region for the multi-user broadcast channel considering both simulated channel realisations and experimental channel measures
    • …
    corecore