37 research outputs found

    Secure Multiuser Communications in Wireless Sensor Networks with TAS and Cooperative Jamming

    Get PDF
    In this paper, we investigate the secure transmission in wireless sensor networks (WSNs) consisting of one multiple-antenna base station (BS), multiple single-antenna legitimate users, one single-antenna eavesdropper and one multiple-antenna cooperative jammer. In an effort to reduce the scheduling complexity and extend the battery lifetime of the sensor nodes, the switch-and-stay combining (SSC) scheduling scheme is exploited over the sensor nodes. Meanwhile, transmit antenna selection (TAS) is employed at the BS and cooperative jamming (CJ) is adopted at the jammer node, aiming at achieving a satisfactory secrecy performance. Moreover, depending on whether the jammer node has the global channel state information (CSI) of both the legitimate channel and the eavesdropper's channel, it explores a zero-forcing beamforming (ZFB) scheme or a null-space artificial noise (NAN) scheme to confound the eavesdropper while avoiding the interference to the legitimate user. Building on this, we propose two novel hybrid secure transmission schemes, termed TAS-SSC-ZFB and TAS-SSC-NAN, for WSNs. We then derive the exact closed-form expressions for the secrecy outage probability and the effective secrecy throughput of both schemes to characterize the secrecy performance. Using these closed-form expressions, we further determine the optimal switching threshold and obtain the optimal power allocation factor between the BS and jammer node for both schemes to minimize the secrecy outage probability, while the optimal secrecy rate is decided to maximize the effective secrecy throughput for both schemes. Numerical results are provided to verify the theoretical analysis and illustrate the impact of key system parameters on the secrecy performance.This work was supported by the National Science Foundation of China (No. 61501507), and the Jiangsu Provincial Natural Science Foundation of China (No. BK20150719). The work of Nan Yang is supported by the Australian Research Council Discovery Project (DP150103905)

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    An Overview of Physical Layer Security with Finite-Alphabet Signaling

    Get PDF
    Providing secure communications over the physical layer with the objective of achieving perfect secrecy without requiring a secret key has been receiving growing attention within the past decade. The vast majority of the existing studies in the area of physical layer security focus exclusively on the scenarios where the channel inputs are Gaussian distributed. However, in practice, the signals employed for transmission are drawn from discrete signal constellations such as phase shift keying and quadrature amplitude modulation. Hence, understanding the impact of the finite-alphabet input constraints and designing secure transmission schemes under this assumption is a mandatory step towards a practical implementation of physical layer security. With this motivation, this article reviews recent developments on physical layer security with finite-alphabet inputs. We explore transmit signal design algorithms for single-antenna as well as multi-antenna wiretap channels under different assumptions on the channel state information at the transmitter. Moreover, we present a review of the recent results on secure transmission with discrete signaling for various scenarios including multi-carrier transmission systems, broadcast channels with confidential messages, cognitive multiple access and relay networks. Throughout the article, we stress the important behavioral differences of discrete versus Gaussian inputs in the context of the physical layer security. We also present an overview of practical code construction over Gaussian and fading wiretap channels, and we discuss some open problems and directions for future research.Comment: Submitted to IEEE Communications Surveys & Tutorials (1st Revision

    Towards an enhanced noncoherent massive MU-MIMO system

    Get PDF
    PhD ThesisMany multiple-input multiple-output (MIMO) downlink transmission schemes assume channel state information (CSI) is available at the receiver/transmitter. In practice, knowledge of CSI is often obtained by using pilot symbols transmitted periodically. However, for some systems, due to high mobility and the cost of channel training and estimation, CSI acquisition is not always feasible. The problem becomes even more difficult when many antennas are used in the system and the channel is changing very rapidly before training is completed. Moreover, as the number of transmit/receive antennas grows large, the number of pilot symbols, system overheads, latency, and power consumption will grow proportionately and thereby the system becomes increasingly complex. As an alternative, a noncoherent system may be used wherein the transmitter/receiver does not need any knowledge of the CSI to perform precoding or detection. This thesis focuses on the design of a noncoherent downlink transmission system to jointly improve the performance and achieve a simple low complexity transmission scheme in three MIMO system scenarios: low rate differential spacetime block coding (STBC) in a downlink multiuser (MU-MIMO) system; high rate differential algebraic STBC in a downlink MU-MIMO system; and differential downlink transmission in a massive MU-MIMO system. Three novel design methods for each of these systems are proposed and analysed thoroughly. For the MIMO system with a low rate noncoherent scheme, a differential STBC MU-MIMO system with a downlink transmission scheme is considered. Specifically, downlink precoding combined with differential modulation (DM) is used to shift the complexity from the receivers to the transmitter. The block diagonalization (BD) precoding scheme is used to cancel co-channel interference (CCI) in addition to exploiting its advantage of enhancing diversity. Since the BD scheme requires channel knowledge at the transmitter, the downlink spreading technique along with DM is also proposed, which does not require channel knowledge neither at the transmitter nor at the receivers. The orthogonal spreading (OS) scheme is employed to have similar principle as code division multiple access (CDMA) multiplexing scheme in order to eliminate the interference between users. As a STBC scheme, the Alamouti code is used that can be encoded/decoded using DM thereby eliminating the need for channel knowledge at the receiver. The proposed schemes yield low complexity transceivers while providing good performance. For the MIMO system with a high rate noncoherent scheme, a differential STBC MU-MIMO system that operates at a high data rate is considered. In particular, a full-rate full-diversity downlink algebraic transmission scheme combined with a differential STBC systems is proposed. To achieve this, perfect algebraic space time codes and Cayley differential (CD) transforms are employed. Since CSI is not needed at the differential receiver, differential schemes are ideal for multiuser systems to shift the complexity from the receivers to the transmitter, thus simplifying user equipment. Furthermore, OS matrices are employed at the transmitter to separate the data streams of different users and enable simple single user decoding. In the OS scheme, the transmitter does not require any knowledge of the CSI to separate the data streams of multiple users; this results in a system which does not need CSI at either end. With this system, to limit the number of possible codewords, a sphere decoder (SD) is used to decode the signals at the receiving end. The proposed scheme yields low complexity transceivers while providing full-rate full-diversity system with good performance. Lastly, a differential downlink transmission scheme is proposed for a massive MIMO system without explicit channel estimation. In particular, a downlink precoding technique combined with a differential encoding scheme is used to simplify the overall system complexity. A novel precoder is designed which, with a large number of transmit antennas, can effectively precancel the multiple access interference (MAI) for each user, thus enhancing the system performance. Maximising the worst case signal-to-interference-plus-noise ratio (SINR) is adopted to optimise the precoder for the users in which full power space profile (PSP) knowledge is available to the base station (BS). Also, two suboptimal solutions based on the matched and the orthogonality approach of PSP are provided to separate the data streams of multiple users. The decision feedback differential detection (DFDD) technique is employed to further improve the performance. In summary, the proposed methods eliminate MAI, enhance system performance, and achieve a simple low complexity system. Moreover, transmission overheads are significantly reduced, the proposed methods avoid explicit channel estimation at both ends.King Fahad Security Collage at the Ministry of Interior - Saudi Arabia

    An Overview of Physical Layer Security with Finite Alphabet Signaling

    Get PDF
    Providing secure communications over the physical layer with the objective of achieving secrecy without requiring a secret key has been receiving growing attention within the past decade. The vast majority of the existing studies in the area of physical layer security focus exclusively on the scenarios where the channel inputs are Gaussian distributed. However, in practice, the signals employed for transmission are drawn from discrete signal constellations such as phase shift keying and quadrature amplitude modulation. Hence, understanding the impact of the finite-alphabet input constraints and designing secure transmission schemes under this assumption is a mandatory step towards a practical implementation of physical layer security. With this motivation, this article reviews recent developments on physical layer security with finite-alphabet inputs. We explore transmit signal design algorithms for single-antenna as well as multi-antenna wiretap channels under different assumptions on the channel state information at the transmitter. Moreover, we present a review of the recent results on secure transmission with discrete signaling for various scenarios including multi-carrier transmission systems, broadcast channels with confidential messages, cognitive multiple access and relay networks. Throughout the article, we stress the important behavioral differences of discrete versus Gaussian inputs in the context of the physical layer security. We also present an overview of practical code construction over Gaussian and fading wiretap channels, and discuss some open problems and directions for future research
    corecore