4 research outputs found

    Sufficient optimality conditions for bilinear optimal control of the linear damped wave equation

    Get PDF
    In this paper we discuss sufficient optimality conditions for an optimal control problem for the linear damped wave equation with the damping parameter as the control. We address the case that the control enters quadratic in the cost function as well as the singular case that the control enters affine. For the non-singular case we consider strong and weak local minima , in the singular case we derive sufficient optimality conditions for weak local minima. Thereby, we take advantage of the Goh transformation applying techniques recently established in Aronna, Bonnans, and Kröner [Math. Program. 168(1):717–757, 2018] and [INRIA research report, 2017]. Moreover, a numerical example for the singular case is presented

    State-constrained control-affine parabolic problems II: Second order sufficient optimality conditions

    Get PDF
    In this paper we consider an optimal control problem governed by a semilinear heat equation with bilinear control-state terms and subject to control and state constraints. The state constraints are of integral type, the integral being with respect to the space variable. The control is multidimensional. The cost functional is of a tracking type and contains a linear term in the control variables. We derive second order sufficient conditions relying on the Goh transform

    Second order analysis of control-affine problems with scalar state constraint

    No full text
    In this article we establish new second order necessary and sufficient optimality conditions for a class of control-affine problems with a scalar control and a scalar state constraint. These optimality conditions extend to the constrained state framework the Goh transform, which is the classical tool for obtaining an extension of the Legendre condition
    corecore