5 research outputs found

    Subclasses of Presburger Arithmetic and the Weak EXP Hierarchy

    Full text link
    It is shown that for any fixed i>0i>0, the Σi+1\Sigma_{i+1}-fragment of Presburger arithmetic, i.e., its restriction to i+1i+1 quantifier alternations beginning with an existential quantifier, is complete for ΣiEXP\mathsf{\Sigma}^{\mathsf{EXP}}_{i}, the ii-th level of the weak EXP hierarchy, an analogue to the polynomial-time hierarchy residing between NEXP\mathsf{NEXP} and EXPSPACE\mathsf{EXPSPACE}. This result completes the computational complexity landscape for Presburger arithmetic, a line of research which dates back to the seminal work by Fischer & Rabin in 1974. Moreover, we apply some of the techniques developed in the proof of the lower bound in order to establish bounds on sets of naturals definable in the Σ1\Sigma_1-fragment of Presburger arithmetic: given a Σ1\Sigma_1-formula Φ(x)\Phi(x), it is shown that the set of non-negative solutions is an ultimately periodic set whose period is at most doubly-exponential and that this bound is tight.Comment: 10 pages, 2 figure

    Heterogeneous Active Agents

    Get PDF
    Over the years, many different agent programming languages have been proposed. In this paper, we propose a concept called Agent Programs using which, the way an agent should act in various situations can be declaratively specified by the creator of that agent. Agent Programs may be built on top of arbitrary pieces of software code and may be used to specify what an agent is obliged to do, what an agent may do, and what an agent may not do. In this paper, we define several successively more sophisticated and epistemically satisfying declarative semantics for agent programs, and study the computation price to be paid (in terms of complexity) for such epistemic desiderata. We further show that agent programs cleanly extend well understood semantics for logic programs, and thus are clearly linked to existing results on logic programming and nonmonotonic reasoning. Last, but not least, we have built a simulation of a Supply Chain application in terms of our theory, building on top of commercial software systems such as Microsoft Access and ESRI's Map Object. (Also cross-referenced as UMIACS-TR-98-15

    Second Order Logic and the Weak Exponential Hierarchies

    No full text

    Second Order Logic and the Weak Exponential Hierarchies

    No full text
    corecore