6,649 research outputs found

    Transcription Factor-DNA Binding Via Machine Learning Ensembles

    Full text link
    We present ensemble methods in a machine learning (ML) framework combining predictions from five known motif/binding site exploration algorithms. For a given TF the ensemble starts with position weight matrices (PWM's) for the motif, collected from the component algorithms. Using dimension reduction, we identify significant PWM-based subspaces for analysis. Within each subspace a machine classifier is built for identifying the TF's gene (promoter) targets (Problem 1). These PWM-based subspaces form an ML-based sequence analysis tool. Problem 2 (finding binding motifs) is solved by agglomerating k-mer (string) feature PWM-based subspaces that stand out in identifying gene targets. We approach Problem 3 (binding sites) with a novel machine learning approach that uses promoter string features and ML importance scores in a classification algorithm locating binding sites across the genome. For target gene identification this method improves performance (measured by the F1 score) by about 10 percentage points over the (a) motif scanning method and (b) the coexpression-based association method. Top motif outperformed 5 component algorithms as well as two other common algorithms (BEST and DEME). For identifying individual binding sites on a benchmark cross species database (Tompa et al., 2005) we match the best performer without much human intervention. It also improved the performance on mammalian TFs. The ensemble can integrate orthogonal information from different weak learners (potentially using entirely different types of features) into a machine learner that can perform consistently better for more TFs. The TF gene target identification component (problem 1 above) is useful in constructing a transcriptional regulatory network from known TF-target associations. The ensemble is easily extendable to include more tools as well as future PWM-based information.Comment: 33 page

    Regulatory motif discovery using a population clustering evolutionary algorithm

    Get PDF
    This paper describes a novel evolutionary algorithm for regulatory motif discovery in DNA promoter sequences. The algorithm uses data clustering to logically distribute the evolving population across the search space. Mating then takes place within local regions of the population, promoting overall solution diversity and encouraging discovery of multiple solutions. Experiments using synthetic data sets have demonstrated the algorithm's capacity to find position frequency matrix models of known regulatory motifs in relatively long promoter sequences. These experiments have also shown the algorithm's ability to maintain diversity during search and discover multiple motifs within a single population. The utility of the algorithm for discovering motifs in real biological data is demonstrated by its ability to find meaningful motifs within muscle-specific regulatory sequences

    Transcription factor-DNA binding via machine learning ensembles

    Full text link
    The network of interactions between transcription factors (TFs) and their regulatory gene targets governs many of the behaviors and responses of cells. Construction of a transcriptional regulatory network involves three interrelated problems, defined for any regulator: finding (1) its target genes, (2) its binding motif and (3) its DNA binding sites. Many tools have been developed in the last decade to solve these problems. However, performance of algorithms for these has not been consistent for all transcription factors. Because machine learning algorithms have shown advantages in integrating information of different types, we investigate a machine-based approach to integrating predictions from an ensemble of commonly used motif exploration algorithms.Published versio

    BLISS: biding site level identification of shared signal-modules in DNA regulatory sequences

    Get PDF
    BACKGROUND: Regulatory modules are segments of the DNA that control particular aspects of gene expression. Their identification is therefore of great importance to the field of molecular genetics. Each module is composed of a distinct set of binding sites for specific transcription factors. Since experimental identification of regulatory modules is an arduous process, accurate computational techniques that supplement this process can be very beneficial. Functional modules are under selective pressure to be evolutionarily conserved. Most current approaches therefore attempt to detect conserved regulatory modules through similarity comparisons at the DNA sequence level. However, some regulatory modules, despite the conservation of their responsible binding sites, are embedded in sequences that have little overall similarity. RESULTS: In this study, we present a novel approach that detects conserved regulatory modules via comparisons at the binding site level. The technique compares the binding site profiles of orthologs and identifies those segments that have similar (not necessarily identical) profiles. The similarity measure is based on the inner product of transformed profiles, which takes into consideration the p values of binding sites as well as the potential shift of binding site positions. We tested this approach on simulated sequence pairs as well as real world examples. In both cases our technique was able to identify regulatory modules which could not to be identified using sequence-similarity based approaches such as rVista 2.0 and Blast. CONCLUSION: The results of our experiments demonstrate that, for sequences with little overall similarity at the DNA sequence level, it is still possible to identify conserved regulatory modules based solely on binding site profiles

    Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria

    Get PDF
    Developing predictive models of multi-protein genetic systems to understand and optimize their behavior remains a combinatorial challenge, particularly when measurement throughput is limited. We developed a computational approach to build predictive models and identify optimal sequences and expression levels, while circumventing combinatorial explosion. Maximally informative genetic system variants were first designed by the RBS Library Calculator, an algorithm to design sequences for efficiently searching a multi-protein expression space across a > 10,000-fold range with tailored search parameters and well-predicted translation rates. We validated the algorithm's predictions by characterizing 646 genetic system variants, encoded in plasmids and genomes, expressed in six gram-positive and gram-negative bacterial hosts. We then combined the search algorithm with system-level kinetic modeling, requiring the construction and characterization of 73 variants to build a sequence-expression-activity map (SEAMAP) for a biosynthesis pathway. Using model predictions, we designed and characterized 47 additional pathway variants to navigate its activity space, find optimal expression regions with desired activity response curves, and relieve rate-limiting steps in metabolism. Creating sequence-expression-activity maps accelerates the optimization of many protein systems and allows previous measurements to quantitatively inform future designs

    A particle swarm optimization-based algorithm for finding gapped motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identifying approximately repeated patterns, or motifs, in DNA sequences from a set of co-regulated genes is an important step towards deciphering the complex gene regulatory networks and understanding gene functions.</p> <p>Results</p> <p>In this work, we develop a novel motif finding algorithm (PSO+) using a population-based stochastic optimization technique called Particle Swarm Optimization (PSO), which has been shown to be effective in optimizing difficult multidimensional problems in continuous domains. We propose a modification of the standard PSO algorithm to handle discrete values, such as characters in DNA sequences. The algorithm provides several features. First, we use both consensus and position-specific weight matrix representations in our algorithm, taking advantage of the efficiency of the former and the accuracy of the latter. Furthermore, many real motifs contain gaps, but the existing methods usually ignore them or assume a user know their exact locations and lengths, which is usually impractical for real applications. In comparison, our method models gaps explicitly, and provides an easy solution to find gapped motifs without any detailed knowledge of gaps. Our method allows the presence of input sequences containing zero or multiple binding sites.</p> <p>Conclusion</p> <p>Experimental results on synthetic challenge problems as well as real biological sequences show that our method is both more efficient and more accurate than several existing algorithms, especially when gaps are present in the motifs.</p

    Statistical Physics of Evolutionary Trajectories on Fitness Landscapes

    Full text link
    Random walks on multidimensional nonlinear landscapes are of interest in many areas of science and engineering. In particular, properties of adaptive trajectories on fitness landscapes determine population fates and thus play a central role in evolutionary theory. The topography of fitness landscapes and its effect on evolutionary dynamics have been extensively studied in the literature. We will survey the current research knowledge in this field, focusing on a recently developed systematic approach to characterizing path lengths, mean first-passage times, and other statistics of the path ensemble. This approach, based on general techniques from statistical physics, is applicable to landscapes of arbitrary complexity and structure. It is especially well-suited to quantifying the diversity of stochastic trajectories and repeatability of evolutionary events. We demonstrate this methodology using a biophysical model of protein evolution that describes how proteins maintain stability while evolving new functions
    corecore