578 research outputs found

    Communication Network Design: Balancing Modularity and Mixing via Optimal Graph Spectra

    Full text link
    By leveraging information technologies, organizations now have the ability to design their communication networks and crowdsourcing platforms to pursue various performance goals, but existing research on network design does not account for the specific features of social networks, such as the notion of teams. We fill this gap by demonstrating how desirable aspects of organizational structure can be mapped parsimoniously onto the spectrum of the graph Laplacian allowing the specification of structural objectives and build on recent advances in non-convex programming to optimize them. This design framework is general, but we focus here on the problem of creating graphs that balance high modularity and low mixing time, and show how "liaisons" rather than brokers maximize this objective

    COMMUNITY DETECTION IN COMPLEX NETWORKS AND APPLICATION TO DENSE WIRELESS SENSOR NETWORKS LOCALIZATION

    Get PDF
    Complex network analysis is applied in numerous researches. Features and characteristics of complex networks provide information associated with a network feature called community structure. Naturally, nodes with similar attributes will be more likely to form a community. Community detection is described as the process by which complex network data are analyzed to uncover organizational properties, and structure; and ultimately to enable extraction of useful information. Analysis of Wireless Sensor Networks (WSN) is considered as one of the most important categories of network analysis due to their enormous and emerging applications. Most WSN applications are location-aware, which entails precise localization of the deployed sensor nodes. However, localization of sensor nodes in very dense network is a challenging task. Among various challenges associated with localization of dense WSNs, anchor node selection is shown as a prominent open problem. Optimum anchor selection impacts overall sensor node localization in terms of accuracy and consumed energy. In this thesis, various approaches are developed to address both overlapping and non-overlapping community detection. The proposed approaches target small-size to very large-size networks in near linear time, which is important for very large, densely-connected networks. Performance of the proposed techniques are evaluated over real-world data-sets with up to 106 nodes and syntactic networks via Newman\u27s Modularity and Normalized Mutual Information (NMI). Moreover, the proposed community detection approaches are extended to develop a novel criterion for range-free anchor selection in WSNs. Our approach uses novel objective functions based on nodes\u27 community memberships to reveal a set of anchors among all available permutations of anchors-selection sets. The performance---the mean and variance of the localization error---of the proposed approach is evaluated for a variety of node deployment scenarios and compared with random anchor selection and the full-ranging approach. In order to study the effectiveness of our algorithm, the performance is evaluated over several simulations that randomly generate network configurations. By incorporating our proposed criteria, the accuracy of the position estimate is improved significantly relative to random anchor selection localization methods. Simulation results show that the proposed technique significantly improves both the accuracy and the precision of the location estimation

    Assortative-Constrained Stochastic Block Models

    Full text link
    Stochastic block models (SBMs) are often used to find assortative community structures in networks, such that the probability of connections within communities is higher than in between communities. However, classic SBMs are not limited to assortative structures. In this study, we discuss the implications of this model-inherent indifference towards assortativity or disassortativity, and show that this characteristic can lead to undesirable outcomes for networks which are presupposedy assortative but which contain a reduced amount of information. To circumvent this issue, we introduce a constrained SBM that imposes strong assortativity constraints, along with efficient algorithmic approaches to solve it. These constraints significantly boost community recovery capabilities in regimes that are close to the information-theoretic threshold. They also permit to identify structurally-different communities in networks representing cerebral-cortex activity regions

    Local to Global: A Distributed Quantum Approximate Optimization Algorithm for Pseudo-Boolean Optimization Problems

    Full text link
    With the rapid advancement of quantum computing, Quantum Approximate Optimization Algorithm (QAOA) is considered as a promising candidate to demonstrate quantum supremacy, which exponentially solves a class of Quadratic Unconstrained Binary Optimization (QUBO) problems. However, limited qubit availability and restricted coherence time challenge QAOA to solve large-scale pseudo-Boolean problems on currently available Near-term Intermediate Scale Quantum (NISQ) devices. In this paper, we propose a distributed QAOA which can solve a general pseudo-Boolean problem by converting it to a simplified Ising model. Different from existing distributed QAOAs' assuming that local solutions are part of a global one, which is not often the case, we introduce community detection using Louvian algorithm to partition the graph where subgraphs are further compressed by community representation and merged into a higher level subgraph. Recursively and backwards, local solutions of lower level subgraphs are updated by heuristics from solutions of higher level subgraphs. Compared with existing methods, our algorithm incorporates global heuristics into local solutions such that our algorithm is proven to achieve a higher approximation ratio and outperforms across different graph configurations. Also, ablation studies validate the effectiveness of each component in our method.Comment: 12 pages, 6 figure

    Stochastic Block Models are a Discrete Surface Tension

    Full text link
    Networks, which represent agents and interactions between them, arise in myriad applications throughout the sciences, engineering, and even the humanities. To understand large-scale structure in a network, a common task is to cluster a network's nodes into sets called "communities", such that there are dense connections within communities but sparse connections between them. A popular and statistically principled method to perform such clustering is to use a family of generative models known as stochastic block models (SBMs). In this paper, we show that maximum likelihood estimation in an SBM is a network analog of a well-known continuum surface-tension problem that arises from an application in metallurgy. To illustrate the utility of this relationship, we implement network analogs of three surface-tension algorithms, with which we successfully recover planted community structure in synthetic networks and which yield fascinating insights on empirical networks that we construct from hyperspectral videos.Comment: to appear in Journal of Nonlinear Scienc
    • …
    corecore