30 research outputs found

    Cloud-based desktop services for thin clients

    Get PDF
    Cloud computing and ubiquitous network availability have renewed people's interest in the thin client concept. By executing applications in virtual desktops on cloud servers, users can access any application from any location with any device. For this to be a successful alternative to traditional offline applications, however, researchers must overcome important challenges. The thin client protocol must display audiovisual output fluidly, and the server executing the virtual desktop should have sufficient resources and ideally be close to the user's current location to limit network delay. From a service provider viewpoint, cost reduction is also an important issue

    MobiThin management framework: design and evaluation

    Get PDF
    In thin client computing, applications are executed on centralized servers. User input (e.g. keystrokes) is sent to a remote server which processes the event and sends the audiovisual output back to the client. This enables execution of complex applications from thin devices. Adopting virtualization technologies on the thin client server brings several advantages, e.g. dedicated environments for each user and interesting facilities such as migration tools. In this paper, a mobile thin client service offered to a large number of mobile users is designed. Pervasive mobile thin client computing requires an intelligent service management to guarantee a high user experience. Due to the dynamic environment, the service management framework has to monitor the environment and intervene when necessary (e.g. adapt thin client protocol settings, move a session from one server to another). A detailed performance analysis of the implemented prototype is presented. It is shown that the prototype can handle up to 700 requests/s to start the mobile thin client service. The prototype can make a decision for up to 700 monitor reports per second

    Cloud-Based Desktop Services for Thin Clients

    Full text link

    eXCloud: Transparent runtime support for scaling mobile applications in cloud

    Get PDF
    Cloud computing augments applications with ease-of-access to the enormous resources on the Internet. Combined with mobile computing technologies, mobile applications can exploit the Cloud everywhere by statically distributing code segments or dynamically migrating running processes onto cloud services. Existing migration techniques are however too coarse-grained for mobile devices, so the overheads often offset the benefits of migration. To build a truly elastic mobile cloud computing infrastructure, we introduce eXCloud (eXtensible Cloud) - a middleware system with multi-level mobility support, ranging from as coarse as a VM instance to as fine as a runtime stack frame, and allows resources to be integrated and used dynamically. In eXCloud, a stack-on-demand (SOD) approach is used to support computation mobility throughout the mobile cloud environment. The approach is fully adaptive, goal-driven and transparent. By downward task migration, applications running on the cloud nodes can exploit or take control of special resources in mobile devices such as GPS and cameras. With a restorable MPI layer, task migrations of MPI parallel programs can happen between cloud nodes or be initiated from a mobile device. Our evaluation shows that SOD outperforms several existing migration mechanisms in terms of migration overhead and latency. All our techniques result in better resource utilization through task migrations among cloud nodes and mobile nodes.published_or_final_versionThe 2011 International Conference on Cloud and Service Computing (CSC), Hong Kong, China, 12-14 December 2011. In Proceedings of CSC, 2011, p. 103-11

    Adaptive live VM migration over a WAN: modeling and implementation

    Get PDF
    Recent advances in virtualization technology enable high mobility of virtual machines and resource provisioning at the data-center level. To streamline the migration process, various migration strategies have been proposed for VM live migration over a local-area network (LAN). The most common solution uses memory pre-copying and assumes the storage is shared on the LAN. While applied to a wide-area network (WAN), the VM live migration algorithms need a new design philosophy to address the challenges of long latency, limited bandwidth, unstable network conditions and the movement of storage. This paper proposes a three-phase fractional hybrid pre-copy and post-copy solution for both memory and storage to achieve highly adaptive migration over a WAN. In this hybrid solution, we selectively migrate an important fraction of memory and storage in the pre-copy and freeze-and-copy phase, while the rest (non-critical data set) is migrated during post-copying. We propose a new metric called performance restoration agility, which considers both the downtime and the VM speed degradation during the post-copy phase, to evaluate the migration process. We also develop a profiling framework and a novel probabilistic prediction model to adaptively find a predictably optimal combination of the memory and storage fractions to migrate. This model-based hybrid solution is implemented on Xen and evaluated in an emulated WAN environment. Experimental results show that our solution wins over all others in adaptiveness for various applications over a WAN, while retaining the responsiveness of post-copy algorithms.published_or_final_versio
    corecore