1,810 research outputs found

    MobiThin management framework: design and evaluation

    Get PDF
    In thin client computing, applications are executed on centralized servers. User input (e.g. keystrokes) is sent to a remote server which processes the event and sends the audiovisual output back to the client. This enables execution of complex applications from thin devices. Adopting virtualization technologies on the thin client server brings several advantages, e.g. dedicated environments for each user and interesting facilities such as migration tools. In this paper, a mobile thin client service offered to a large number of mobile users is designed. Pervasive mobile thin client computing requires an intelligent service management to guarantee a high user experience. Due to the dynamic environment, the service management framework has to monitor the environment and intervene when necessary (e.g. adapt thin client protocol settings, move a session from one server to another). A detailed performance analysis of the implemented prototype is presented. It is shown that the prototype can handle up to 700 requests/s to start the mobile thin client service. The prototype can make a decision for up to 700 monitor reports per second

    Cloud-based desktop services for thin clients

    Get PDF
    Cloud computing and ubiquitous network availability have renewed people's interest in the thin client concept. By executing applications in virtual desktops on cloud servers, users can access any application from any location with any device. For this to be a successful alternative to traditional offline applications, however, researchers must overcome important challenges. The thin client protocol must display audiovisual output fluidly, and the server executing the virtual desktop should have sufficient resources and ideally be close to the user's current location to limit network delay. From a service provider viewpoint, cost reduction is also an important issue

    Adaptive live VM migration over a WAN: modeling and implementation

    Get PDF
    Recent advances in virtualization technology enable high mobility of virtual machines and resource provisioning at the data-center level. To streamline the migration process, various migration strategies have been proposed for VM live migration over a local-area network (LAN). The most common solution uses memory pre-copying and assumes the storage is shared on the LAN. While applied to a wide-area network (WAN), the VM live migration algorithms need a new design philosophy to address the challenges of long latency, limited bandwidth, unstable network conditions and the movement of storage. This paper proposes a three-phase fractional hybrid pre-copy and post-copy solution for both memory and storage to achieve highly adaptive migration over a WAN. In this hybrid solution, we selectively migrate an important fraction of memory and storage in the pre-copy and freeze-and-copy phase, while the rest (non-critical data set) is migrated during post-copying. We propose a new metric called performance restoration agility, which considers both the downtime and the VM speed degradation during the post-copy phase, to evaluate the migration process. We also develop a profiling framework and a novel probabilistic prediction model to adaptively find a predictably optimal combination of the memory and storage fractions to migrate. This model-based hybrid solution is implemented on Xen and evaluated in an emulated WAN environment. Experimental results show that our solution wins over all others in adaptiveness for various applications over a WAN, while retaining the responsiveness of post-copy algorithms.published_or_final_versio

    Live migration of user environments across wide area networks

    Get PDF
    A complex challenge in mobile computing is to allow the user to migrate her highly customised environment while moving to a different location and to continue work without interruption. I motivate why this is a highly desirable capability and conduct a survey of the current approaches towards this goal and explain their limitations. I then propose a new architecture to support user mobility by live migration of a user’s operating system instance over the network. Previous work includes the Collective and Internet Suspend/Resume projects that have addressed migration of a user’s environment by suspending the running state and resuming it at a later time. In contrast to previous work, this work addresses live migration of a user’s operating system instance across wide area links. Live migration is done by performing most of the migration while the operating system is still running, achieving very little downtime and preserving all network connectivity. I developed an initial proof of concept of this solution. It relies on migrating whole operating systems using the Xen virtual machine and provides a way to perform live migration of persistent storage as well as the network connections across subnets. These challenges have not been addressed previously in this scenario. In a virtual machine environment, persistent storage is provided by virtual block devices. The architecture supports decentralized virtual block device replication across wide area network links, as well as migrating network connection across subnetworks using the Host Identity Protocol. The proposed architecture is compared against existing solutions and an initial performance evaluation of the prototype implementation is presented, showing that such a solution is a promising step towards true seamless mobility of fully fledged computing environments

    When Clouds become Green: the Green Open Cloud Architecture

    Get PDF
    Virtualization solutions appear as alternative approaches for companies to consolidate their operational services on a physical infrastructure, while preserving specific functionalities inside the Cloud perimeter (e.g., security, fault tolerance, reliability). These consolidation approaches are explored to propose some energy reduction while switching OFF unused computing nodes. We study the impact of virtual machines aggregation in terms of energy consumption. Some load-balancing strategies associated with the migration of virtual machines inside the Cloud infrastructures will be showed. We will present the design of a new original energy-efficient Cloud infrastructure called Green Open Cloud

    Component-wise application migration in bidimensional cross-cloud environments

    Get PDF
    We propose an algorithm for the migration of cloud applications' components between different providers, possibly changing their service level between IaaS and PaaS. Our solution relies on three of the key ingredients of the trans-cloud approach: a unified API, agnostic topology descriptions, and mechanisms for the independent specification of providers. We show how our approach allows us to overcome some of the current interoperability and portability issues of cloud environments to propose a solution for migration, present an implementation of our proposed solution, and illustrate it with a case study and experimental results.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    • …
    corecore