6 research outputs found

    Proxemic Interaction in a Multi-Room Music System

    Get PDF

    The Cognitive Perception of a Multi-room Music System with Spatial Interaction

    Get PDF
    Abstract. In recent years we have seen a growing interest in exploring spatial interaction as a means of interacting with computer systems through what has been labelled “proxemic interaction”. In order to explore the potentials and challenges of spatial interaction spanning across separate physical locations, we have developed a multi-room music system and performed a field evaluation of use. The system extends Apple AirPlay to allow spatial interaction with one’s music player, for example, adapting an App interface to the current location of the user, and allowing music to follow the user around the house. The prototype was deployed in two households over a three-week period, where data was col-lected through logging, user-written diaries and interviews. The field evaluation revealed a number of findings related to the cognitive perception of the spaces it was used in, such as importance of a simple interaction, the importance of providing local interaction, the challenge of foreground and background inter-actions, and challenges in designing interaction with music in discrete zones

    Collocated Collaboration Analytics: Principles and Dilemmas for Mining Multimodal Interaction Data

    Full text link
    © 2019, Copyright © 2017 Taylor & Francis Group, LLC. Learning to collaborate effectively requires practice, awareness of group dynamics, and reflection; often it benefits from coaching by an expert facilitator. However, in physical spaces it is not always easy to provide teams with evidence to support collaboration. Emerging technology provides a promising opportunity to make collocated collaboration visible by harnessing data about interactions and then mining and visualizing it. These collocated collaboration analytics can help researchers, designers, and users to understand the complexity of collaboration and to find ways they can support collaboration. This article introduces and motivates a set of principles for mining collocated collaboration data and draws attention to trade-offs that may need to be negotiated en route. We integrate Data Science principles and techniques with the advances in interactive surface devices and sensing technologies. We draw on a 7-year research program that has involved the analysis of six group situations in collocated settings with more than 500 users and a variety of surface technologies, tasks, grouping structures, and domains. The contribution of the article includes the key insights and themes that we have identified and summarized in a set of principles and dilemmas that can inform design of future collocated collaboration analytics innovations

    Privacy-Protecting Techniques for Behavioral Data: A Survey

    Get PDF
    Our behavior (the way we talk, walk, or think) is unique and can be used as a biometric trait. It also correlates with sensitive attributes like emotions. Hence, techniques to protect individuals privacy against unwanted inferences are required. To consolidate knowledge in this area, we systematically reviewed applicable anonymization techniques. We taxonomize and compare existing solutions regarding privacy goals, conceptual operation, advantages, and limitations. Our analysis shows that some behavioral traits (e.g., voice) have received much attention, while others (e.g., eye-gaze, brainwaves) are mostly neglected. We also find that the evaluation methodology of behavioral anonymization techniques can be further improved

    Analysing, visualising and supporting collaborative learning using interactive tabletops

    Get PDF
    The key contribution of this thesis is a novel approach to design, implement and evaluate the conceptual and technological infrastructure that captures student’s activity at interactive tabletops and analyses these data through Interaction Data Analytics techniques to provide support to teachers by enhancing their awareness of student’s collaboration. To achieve the above, this thesis presents a series of carefully designed user studies to understand how to capture, analyse and distil indicators of collaborative learning. We perform this in three steps: the exploration of the feasibility of the approach, the construction of a novel solution and the execution of the conceptual proposal, both under controlled conditions and in the wild. A total of eight datasets were analysed for the studies that are described in this thesis. This work pioneered in a number of areas including the application of data mining techniques to study collaboration at the tabletop, a plug-in solution to add user-identification to a regular tabletop using a depth sensor and the first multi-tabletop classroom used to run authentic collaborative activities associated with the curricula. In summary, while the mechanisms, interfaces and studies presented in this thesis were mostly explored in the context of interactive tabletops, the findings are likely to be relevant to other forms of groupware and learning scenarios that can be implemented in real classrooms. Through the mechanisms, the studies conducted and our conceptual framework this thesis provides an important research foundation for the ways in which interactive tabletops, along with data mining and visualisation techniques, can be used to provide support to improve teacher’s understanding about student’s collaboration and learning in small groups

    Interaction design for situated media production teams

    Get PDF
    PhD ThesisMedia production teams are the backbone of many media industries including television, sport gatherings and live music events. These domains are characterised by a key set of situational factors which significantly impact on the collaborative production workflow, such as temporality, professional concerns and mission criticality. The availability of new interaction technologies presents an opportunity to design systems to support these teams in these complex environments, leveraging the affordances of interaction technologies in response to the situated factors that impact specifically on these types of domains. StoryCrate and ProductionCrate, two large-scale real-world prototype systems for supporting situated media production teams were designed and deployed to explore the interaction design considerations that could support these teams in specific scenarios. Through an extensive analysis of these deployments, key design considerations, interaction techniques and modalities are presented that can be developed in response to the situational factors found in collaborative media production environments
    corecore