909 research outputs found

    Seamless Support of Low Latency Mobile Applications with NFV-Enabled Mobile Edge-Cloud

    Get PDF
    Emerging mobile multimedia applications, such as augmented reality, have stringent latency requirements and high computational cost. To address this, mobile edge-cloud (MEC) has been proposed as an approach to bring resources closer to users. Recently, in contrast to conventional fixed cloud locations, the advent of network function virtualization (NFV) has, with some added cost due to the necessary decentralization, enhanced MEC with new flexibility in placing MEC services to any nodes capable of virtualizing their resources. In this work, we address the question on how to optimally place resources among NFV- enabled nodes to support mobile multimedia applications with low latency requirement and when to adapt the current resource placements to address workload changes. We first show that the placement optimization problem is NP-hard and propose an online dynamic resource allocation scheme that consists of an adaptive greedy heuristic algorithm and a detection mechanism to identify the time when the system will no longer be able to satisfy the applications’ delay requirement. Our scheme takes into account the effect of current existing techniques (i.e., auto- scaling and load balancing). We design and implement a realistic NFV-enabled MEC simulated framework and show through ex- tensive simulations that our proposal always manages to allocate sufficient resources on time to guarantee continuous satisfaction of the application latency requirements under changing workload while incurring up to 40% less cost in comparison to existing overprovisioning approaches

    Seamless Support of Low Latency Mobile Applications with NFV-Enabled Mobile Edge-Cloud

    Get PDF
    Emerging mobile multimedia applications, such as augmented reality, have stringent latency requirements and high computational cost. To address this, mobile edge-cloud (MEC) has been proposed as an approach to bring resources closer to users. Recently, in contrast to conventional fixed cloud locations, the advent of network function virtualization (NFV) has, with some added cost due to the necessary decentralization, enhanced MEC with new flexibility in placing MEC services to any nodes capable of virtualizing their resources. In this work, we address the question on how to optimally place resources among NFV-enabled nodes to support mobile multimedia applications with low latency requirement and when to adapt the current resource placements to address workload changes. We first show that the placement optimization problem is NP-hard and propose an online dynamic resource allocation scheme that consists of an adaptive greedy heuristic algorithm and a detection mechanism to identify the time when the system will no longer be able to satisfy the applications' delay requirement. Our scheme takes into account the effect of current existing techniques (i.e., auto-scaling and load balancing). We design and implement a realistic NFV-enabled MEC simulated framework and show through extensive simulations that our proposal always manages to allocate sufficient resources on time to guarantee continuous satisfaction of the application latency requirements under changing workload while incurring up to 40% less cost in comparison to existing overprovisioning approaches

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Fog Computing: A Taxonomy, Survey and Future Directions

    Full text link
    In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named "Fog computing" has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/ sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features.We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research
    • …
    corecore