1,327 research outputs found

    Mobility Management in beyond 3G-Environments

    Get PDF
    Beyond 3G-environments are typically defined as environments that integrate different wireless and fixed access network technologies. In this paper, we address IP based Mobility Management (MM) in beyond 3G-environments with a focus on wireless access networks, motivated by the current trend of WiFi, GPRS, and UMTS networks. The GPRS and UMTS networks provide countrywide network access, while the WiFi networks provide network access in local areas such as city centres and airports. As a result, mobile end-users can be always on-line and connected to their preferred network(s), these network preferences are typically stored in a user profile. For example, an end-user who wishes to be connected with highest bandwidth could be connected to a WiFi network when available and fall back to GPRS when moving outside the hotspot area.\ud In this paper, we consider a combination of MM for legacy services (like web browsing, telnet, etc.) using Mobile IP and multimedia services using SIP. We assume that the end-user makes use of multi-interface terminals with the capability of selecting one or more types of access networks\ud based on preferences. For multimedia sessions, like VoIP or streaming video, we distinguish between changes in network access when the end-user is in a session or not in a session. If the end-user is not in a session, he or she needs to be able to start new sessions and receive invitations for new sessions. If the end-user is in a session, the session needs to be handed over to the new access network as seamless as possible from the perspective of the end-user. We propose an integrated but flexible solution to these problems that facilitates MM with a customizable transparency to applications and end-users

    A Survey on Handover Management in Mobility Architectures

    Full text link
    This work presents a comprehensive and structured taxonomy of available techniques for managing the handover process in mobility architectures. Representative works from the existing literature have been divided into appropriate categories, based on their ability to support horizontal handovers, vertical handovers and multihoming. We describe approaches designed to work on the current Internet (i.e. IPv4-based networks), as well as those that have been devised for the "future" Internet (e.g. IPv6-based networks and extensions). Quantitative measures and qualitative indicators are also presented and used to evaluate and compare the examined approaches. This critical review provides some valuable guidelines and suggestions for designing and developing mobility architectures, including some practical expedients (e.g. those required in the current Internet environment), aimed to cope with the presence of NAT/firewalls and to provide support to legacy systems and several communication protocols working at the application layer

    Interworking Architectures in Heterogeneous Wireless Networks: An Algorithmic Overview

    Get PDF
    The scarce availability of spectrum and the proliferation of smartphones, social networking applications, online gaming etc., mobile network operators (MNOs) are faced with an exponential growth in packet switched data requirements on their networks. Haven invested in legacy systems (such as HSPA, WCDMA, WiMAX, Cdma2000, LTE, etc.) that have hitherto withstood the current and imminent data usage demand, future and projected usage surpass the capabilities of the evolution of these individual technologies. Hence, a more critical, cost-effective and flexible approach to provide ubiquitous coverage for the user using available spectrum is of high demand. Heterogeneous Networks make use of these legacy systems by allowing users to connect to the best network available and most importantly seamlessly handover active sessions amidst them. This paper presents a survey of interworking architectures between IMT 2000 candidate networks that employ the use of IEFT protocols such as MIP, mSCTP, HIP, MOBIKE, IKEV2 and SIP etc. to bring about this much needed capacity

    Multimedia session continuity in the IP multimedia subsystem : investigation and testbed implementation

    Get PDF
    Includes bibliographical references (leaves 91-94).The advent of Internet Protocol (IP) based rich multimedia services and applications has seen rapid growth and adoption in recent years, with an equally increasing user base. Voice over IP (VoIP) and IP Television (IPTV) are key examples of services that are blurring the lines between traditional stove-pipe approach network infrastructures. In these, each service required a different network technology to be provisioned, and could only be accessed through a specific end user equipment (UE) technology. The move towards an all-IP core network infrastructure and the proliferation of multi-capability multi-interface user devices has spurred a convergence trend characterized by access to services and applications through any network, any device and anywhere

    Mobility Management, Quality of Service, and Security in the Design of Next Generation Wireless Network

    Full text link
    The next generation wireless network needs to provide seamless roaming among various access technologies in a heterogeneous environment. In allowing users to access any system at anytime and anywhere, the performance of mobility-enabled protocols is important. While Mobile IPv6 is generally used to support macro-mobility, integrating Mobile IPv6 with Session Initiation Protocol (SIP) to support IP traffic will lead to improved mobility performance. Advanced resource management techniques will ensure Quality of Service (QoS) during real-time mobility within the Next Generation Network (NGN) platform. The techniques may use a QoS Manager to allow end-to-end coordination and adaptation of Quality of Service. The function of the QoS Manager also includes dynamic allocation of resources during handover. Heterogeneous networks raise many challenges in security. A security entity can be configured within the QoS Manager to allow authentication and to maintain trust relationships in order to minimize threats during system handover. The next generation network needs to meet the above requirements of mobility, QoS, and security

    Parametric Estimation of Handoff

    Full text link
    The efficiency of wireless technology depends upon the seamless connectivity to the user at anywhere any time.Heterogeneous wireless networks are an integration of different networks with diversified technologies. The most essential requirement for Seamless vertical handover is that the received signal strength should always be healthy. Mobile device enabled with multiple wireless technologies makes it possible to maintain seamless connectivity in highly dynamic environment.Since the available bandwidth is limited and the number of users is growing rapidly, it is a real challenge to maintain the received signal strength in a healthy stage.In this work, the proposed, cost effective parametric estimation for vertical handover shows that the received signal strength maintains a healthy level by considering the novel concept.Comment: 5 Pages,3 figures, NCCCS-12,ISBN:978-1-4673-2837-

    Interworking between WLAN and 3G Cellular Networks: An IMS Based Architecture

    Full text link
    In this paper, a novel architecture for interworking of the Wireless Local Area Network (WLAN) and the Third Generation (3G) mobile cellular network is presented. This architecture is a hybrid model with additional controls compared with the existing architectures and the use of IP Multimedia Subsystem (IMS), as an arbitrator for coupling and real-time session management. Furthermore, a new networking entity called a mobility manager has been introduced within the IMS for seamless management of vertical handoffs. Efficient strategies for IP address distribution and bypassing high traffic loads form the cellular core network are other benefits of this architecture
    • …
    corecore