4,880 research outputs found

    Sculpting the band gap: a computational approach

    Get PDF
    Materials with optimized band gap are needed in many specialized applications. In this work, we demonstrate that Hellmann-Feynman forces associated with the gap states can be used to find atomic coordinates with a desired electronic density of states. Using tight-binding models, we show that this approach can be used to arrive at electronically designed models of amorphous silicon and carbon. We provide a simple recipe to include a priori electronic information in the formation of computer models of materials, and prove that this information may have profound structural consequences. An additional example of a graphene nanoribbon is provided to demonstrate the applicability of this approach to engineer 2-dimensional materials. The models are validated with plane-wave density functional calculations.Comment: Submitted to Physical Review Letters on June 12, 201

    An interoceptive predictive coding model of conscious presence

    Get PDF
    We describe a theoretical model of the neurocognitive mechanisms underlying conscious presence and its disturbances. The model is based on interoceptive prediction error and is informed by predictive models of agency, general models of hierarchical predictive coding and dopaminergic signaling in cortex, the role of the anterior insular cortex (AIC) in interoception and emotion, and cognitive neuroscience evidence from studies of virtual reality and of psychiatric disorders of presence, specifically depersonalization/derealization disorder. The model associates presence with successful suppression by top-down predictions of informative interoceptive signals evoked by autonomic control signals and, indirectly, by visceral responses to afferent sensory signals. The model connects presence to agency by allowing that predicted interoceptive signals will depend on whether afferent sensory signals are determined, by a parallel predictive-coding mechanism, to be self-generated or externally caused. Anatomically, we identify the AIC as the likely locus of key neural comparator mechanisms. Our model integrates a broad range of previously disparate evidence, makes predictions for conjoint manipulations of agency and presence, offers a new view of emotion as interoceptive inference, and represents a step toward a mechanistic account of a fundamental phenomenological property of consciousness

    Virtual prototyping with surface reconstruction and freeform geometric modeling using level-set method

    Get PDF
    More and more products with complex geometries are being designed and manufactured by computer aided design (CAD) and rapid prototyping (RP) technologies. Freeform surface is a geometrical feature widely used in modern products like car bodies, airfoils and turbine blades as well as in aesthetic artifacts. How to efficiently design and generate digital prototypes with freeform surfaces is an important issue in CAD. This paper presents the development of a Virtual Sculpting system and addresses the issues of surface reconstruction from dexel data structures and freeform geometric modeling using the level-set method from distance field structure. Our virtual sculpting method is based on the metaphor of carving a solid block into a 3D freeform object using a 3D haptic input device integrated with the computer visualization. This dissertation presents the result of the study and consists primarily of four papers --Abstract, page iv

    IUPUC Spatial Innovation Lab

    Get PDF
    During the summer of 2016 the IUPUC ME Division envi-sioned the concept of an “Imagineering Lab” based largely on academic makerspace concepts. Important sub-sections of the Imagineering Lab are its “Actualization Lab” (mecha-tronics, actuators, sensors, DAQ devices etc.) and a “Spatial Innovation Lab” (SIL) based on developing “dream stations” (computer work stations) equipped with exciting new tech-nology in intuitive 2D and 3D image creation and Virtual Reality (VR) technology. The objective of the SIL is to cre-ate a work flow converting intuitively created imagery to an-imation, engineering simulation and analysis and computer driven manufacturing interfaces. This paper discusses the challenges and methods being used to create a sustainable Spatial Innovation Lab
    corecore