4 research outputs found

    Integrated circuit outlier identification by multiple parameter correlation

    Get PDF
    Semiconductor manufacturers must ensure that chips conform to their specifications before they are shipped to customers. This is achieved by testing various parameters of a chip to determine whether it is defective or not. Separating defective chips from fault-free ones is relatively straightforward for functional or other Boolean tests that produce a go/no-go type of result. However, making this distinction is extremely challenging for parametric tests. Owing to continuous distributions of parameters, any pass/fail threshold results in yield loss and/or test escapes. The continuous advances in process technology, increased process variations and inaccurate fault models all make this even worse. The pass/fail thresholds for such tests are usually set using prior experience or by a combination of visual inspection and engineering judgment. Many chips have parameters that exceed certain thresholds but pass Boolean tests. Owing to the imperfect nature of tests, to determine whether these chips (called "outliers") are indeed defective is nontrivial. To avoid wasted investment in packaging or further testing it is important to screen defective chips early in a test flow. Moreover, if seemingly strange behavior of outlier chips can be explained with the help of certain process parameters or by correlating additional test data, such chips can be retained in the test flow before they are proved to be fatally flawed. In this research, we investigate several methods to identify true outliers (defective chips, or chips that lead to functional failure) from apparent outliers (seemingly defective, but fault-free chips). The outlier identification methods in this research primarily rely on wafer-level spatial correlation, but also use additional test parameters. These methods are evaluated and validated using industrial test data. The potential of these methods to reduce burn-in is discussed

    Investigation into voltage and process variation-aware manufacturing test

    No full text
    Increasing integration and complexity in IC design provides challenges for manufacturing testing. This thesis studies how process and supply voltage variation influence defect behaviour to determine the impact on manufacturing test cost and quality. The focus is on logic testing of static CMOS designs with respect to two important defect types in deep submicron CMOS: resistive bridges and full opens. The first part of the thesis addresses testing for resistive bridge defects in designs with multiple supply voltage settings. To enable analysis, a fault simulator is developed using a supply voltage-aware model for bridge defect behaviour. The analysis shows that for high defect coverage it is necessary to perform test for more than one supply voltage setting, due to supply voltage-dependent behaviour. A low-cost and effective test method is presented consisting of multi-voltage test generation that achieves high defect coverage and test set size reduction without compromise to defect coverage. Experiments on synthesised benchmarks with realistic bridge locations validate the proposed method.The second part focuses on the behaviour of full open defects under supply voltage variation. The aim is to determine the appropriate value of supply voltage to use when testing. Two models are considered for the behaviour of full open defects with and without gate tunnelling leakage influence. Analysis of the supply voltage-dependent behaviour of full open defects is performed to determine if it is required to test using more than one supply voltage to detect all full open defects. Experiments on synthesised benchmarks using an extended version of the fault simulator tool mentioned above, measure the quantitative impact of supply voltage variation on defect coverage.The final part studies the impact of process variation on the behaviour of bridge defects. Detailed analysis using synthesised ISCAS benchmarks and realistic bridge model shows that process variation leads to additional faults. If process variation is not considered in test generation, the test will fail to detect some of these faults, which leads to test escapes. A novel metric to quantify the impact of process variation on test quality is employed in the development of a new test generation tool, which achieves high bridge defect coverage. The method achieves a user-specified test quality with test sets which are smaller than test sets generated without consideration of process variation

    Circuit Design

    Get PDF
    Circuit Design = Science + Art! Designers need a skilled "gut feeling" about circuits and related analytical techniques, plus creativity, to solve all problems and to adhere to the specifications, the written and the unwritten ones. You must anticipate a large number of influences, like temperature effects, supply voltages changes, offset voltages, layout parasitics, and numerous kinds of technology variations to end up with a circuit that works. This is challenging for analog, custom-digital, mixed-signal or RF circuits, and often researching new design methods in relevant journals, conference proceedings and design tools unfortunately gives the impression that just a "wild bunch" of "advanced techniques" exist. On the other hand, state-of-the-art tools nowadays indeed offer a good cockpit to steer the design flow, which include clever statistical methods and optimization techniques.Actually, this almost presents a second breakthrough, like the introduction of circuit simulators 40 years ago! Users can now conveniently analyse all the problems (discover, quantify, verify), and even exploit them, for example for optimization purposes. Most designers are caught up on everyday problems, so we fit that "wild bunch" into a systematic approach for variation-aware design, a designer's field guide and more. That is where this book can help! Circuit Design: Anticipate, Analyze, Exploit Variations starts with best-practise manual methods and links them tightly to up-to-date automation algorithms. We provide many tractable examples and explain key techniques you have to know. We then enable you to select and setup suitable methods for each design task - knowing their prerequisites, advantages and, as too often overlooked, their limitations as well. The good thing with computers is that you yourself can often verify amazing things with little effort, and you can use software not only to your direct advantage in solving a specific problem, but also for becoming a better skilled, more experienced engineer. Unfortunately, EDA design environments are not good at all to learn about advanced numerics. So with this book we also provide two apps for learning about statistic and optimization directly with circuit-related examples, and in real-time so without the long simulation times. This helps to develop a healthy statistical gut feeling for circuit design. The book is written for engineers, students in engineering and CAD / methodology experts. Readers should have some background in standard design techniques like entering a design in a schematic capture and simulating it, and also know about major technology aspects

    Circuit Design

    Get PDF
    Circuit Design = Science + Art! Designers need a skilled "gut feeling" about circuits and related analytical techniques, plus creativity, to solve all problems and to adhere to the specifications, the written and the unwritten ones. You must anticipate a large number of influences, like temperature effects, supply voltages changes, offset voltages, layout parasitics, and numerous kinds of technology variations to end up with a circuit that works. This is challenging for analog, custom-digital, mixed-signal or RF circuits, and often researching new design methods in relevant journals, conference proceedings and design tools unfortunately gives the impression that just a "wild bunch" of "advanced techniques" exist. On the other hand, state-of-the-art tools nowadays indeed offer a good cockpit to steer the design flow, which include clever statistical methods and optimization techniques.Actually, this almost presents a second breakthrough, like the introduction of circuit simulators 40 years ago! Users can now conveniently analyse all the problems (discover, quantify, verify), and even exploit them, for example for optimization purposes. Most designers are caught up on everyday problems, so we fit that "wild bunch" into a systematic approach for variation-aware design, a designer's field guide and more. That is where this book can help! Circuit Design: Anticipate, Analyze, Exploit Variations starts with best-practise manual methods and links them tightly to up-to-date automation algorithms. We provide many tractable examples and explain key techniques you have to know. We then enable you to select and setup suitable methods for each design task - knowing their prerequisites, advantages and, as too often overlooked, their limitations as well. The good thing with computers is that you yourself can often verify amazing things with little effort, and you can use software not only to your direct advantage in solving a specific problem, but also for becoming a better skilled, more experienced engineer. Unfortunately, EDA design environments are not good at all to learn about advanced numerics. So with this book we also provide two apps for learning about statistic and optimization directly with circuit-related examples, and in real-time so without the long simulation times. This helps to develop a healthy statistical gut feeling for circuit design. The book is written for engineers, students in engineering and CAD / methodology experts. Readers should have some background in standard design techniques like entering a design in a schematic capture and simulating it, and also know about major technology aspects
    corecore