945 research outputs found

    Are quasi-Monte Carlo algorithms efficient for two-stage stochastic programs?

    Get PDF
    Quasi-Monte Carlo algorithms are studied for designing discrete approximations of two-stage linear stochastic programs with random right-hand side and continuous probability distribution. The latter should allow for a transformation to a distribution with independent marginals. The two-stage integrands are piecewise linear, but neither smooth nor lie in the function spaces considered for QMC error analysis. We show that under some weak geometric condition on the two-stage model all terms of their ANOVA decomposition, except the one of highest order, are continuously differentiable and that first and second order ANOVA terms have mixed first order partial derivatives. Hence, randomly shifted lattice rules (SLR) may achieve the optimal rate of convergence not depending on the dimension if the effective superposition dimension is at most two. We discuss effective dimensions and dimension reduction for two-stage integrands. The geometric condition is shown to be satisfied almost everywhere if the underlying probability distribution is normal and principal component analysis (PCA) is used for transforming the covariance matrix. Numerical experiments for a large scale two-stage stochastic production planning model with normal demand show that indeed convergence rates close to the optimal are achieved when using SLR and randomly scrambled Sobol' point sets accompanied with PCA for dimension reduction

    Exponential Squared Integrability for the Discrepancy Function in Two Dimensions

    Full text link
    Let A_N be an N-point distribution in the unit square in the Euclidean plane. We consider the Discrepancy function D_N(x) in two dimensions with respect to rectangles with lower left corner anchored at the origin and upper right corner at the point x. This is the difference between the actual number of points of A_N in such a rectangle and the expected number of points - N x_1x_2 - in the rectangle. We prove sharp estimates for the BMO norm and the exponential squared Orlicz norm of D_N(x). For example we show that necessarily ||D_N||_(expL^2) >c(logN)^(1/2) for some aboslute constant c>0. On the other hand we use a digit scrambled version of the van der Corput set to show that this bound is tight in the case N=2^n, for some positive integer n. These results unify the corresponding classical results of Roth and Schmidt in a sharp fashion.Comment: 27 pages, 3 figures. Many improvements reflecting the comments and observations of the referee. Final version. Submitted to Mathematik

    Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands

    Full text link
    We study a random sampling technique to approximate integrals ∫[0,1]sf(x) dx\int_{[0,1]^s}f(\mathbf{x})\,\mathrm{d}\mathbf{x} by averaging the function at some sampling points. We focus on cases where the integrand is smooth, which is a problem which occurs in statistics. The convergence rate of the approximation error depends on the smoothness of the function ff and the sampling technique. For instance, Monte Carlo (MC) sampling yields a convergence of the root mean square error (RMSE) of order N−1/2N^{-1/2} (where NN is the number of samples) for functions ff with finite variance. Randomized QMC (RQMC), a combination of MC and quasi-Monte Carlo (QMC), achieves a RMSE of order N−3/2+εN^{-3/2+\varepsilon} under the stronger assumption that the integrand has bounded variation. A combination of RQMC with local antithetic sampling achieves a convergence of the RMSE of order N−3/2−1/s+εN^{-3/2-1/s+\varepsilon} (where s≥1s\ge1 is the dimension) for functions with mixed partial derivatives up to order two. Additional smoothness of the integrand does not improve the rate of convergence of these algorithms in general. On the other hand, it is known that without additional smoothness of the integrand it is not possible to improve the convergence rate. This paper introduces a new RQMC algorithm, for which we prove that it achieves a convergence of the root mean square error (RMSE) of order N−α−1/2+εN^{-\alpha-1/2+\varepsilon} provided the integrand satisfies the strong assumption that it has square integrable partial mixed derivatives up to order α>1\alpha>1 in each variable. Known lower bounds on the RMSE show that this rate of convergence cannot be improved in general for integrands with this smoothness. We provide numerical examples for which the RMSE converges approximately with order N−5/2N^{-5/2} and N−7/2N^{-7/2}, in accordance with the theoretical upper bound.Comment: Published in at http://dx.doi.org/10.1214/11-AOS880 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore